

TRIVAC

Rotary Vane Vacuum Pumps, Oil-Sealed; 1.5 to 65 m³ x h⁻¹ (0.7 to 38.3 cfm)

S 1,5, Single-Stage

TRIVAC E, Two-Stage

TRIVAC B, Two-Stage

171.01.02 Excerpt from the Oerlikon Leybold Vacuum Full Line Catalog Product Section C01 Edition July 2007

Contents

General Applications and Accessories
Products Small Compact Pump S 1,5
Two-Stage, Oil-Sealed Rotary Vane Vacuum Pump C01.06 TRIVAC D 2,5 E C01.07 TRIVAC B, Two-Stage Rotary Vane Vacuum Pumps C01.10 TRIVAC D 4 B and D 8 B C01.12 TRIVAC D 16 B and D 25 B C01.16 TRIVAC D 40 B and D 65 B C01.20 TRIVAC D 16 B-DOT C01.24 TRIVAC D 16 B-EX (Explosion Protected and Pressure Burst Resistant) C01.26
TRIVAC BCS, Two-Stage Rotary Vane Vacuum PumpsC01.28TRIVAC D 16 BCS to D 65 BCSC01.30TRIVAC D 16 BCS-PFPE to D 65 BCS-PFPEC01.34Motor Dependant DataC01.38for the TRIVAC B, BCS and BCS-PFPEC01.38
Accessories
Accessories for TRIVAC E Exhaust Filter Drain Tap
Accessories for TRIVAC E and B Exhaust Filters AF 8 and AF 25
SE Smoke Eliminator
Exhaust Filters with Lubricant Return ARP 4-8, AR 4-8, AR 16-25, AR 40-65
Exhaust Filters with Lubricant Return ARS 16-25 and ARS 40-65
CFS 16-25 and CFS 40-65. C01.62 Inert Gas System IGS 16-25 and IGS 40-65. C01.63 Limit Switch System LSS 16-25 and LSS 40-65. C01.64 Electrical Indicator System EIS 40-65. C01.65 Condensate Separators AK 4-8, AK 16-25, AK 40-65. C01.66 Roots Pump Adaptor . C01.67 OF1000 Oil Filtering System . C01.68
General Accessories Flange Components, Valves
MiscellaneousVacuum Pump OilC01.74ServicesC01.8260 Hz CurvesC01.86

S 1,5

TRIVAC E

TRIVAC B

TRIVAC B-Ex

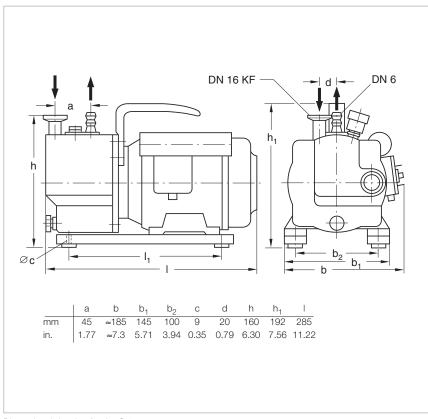
TRIVAC BCS

General

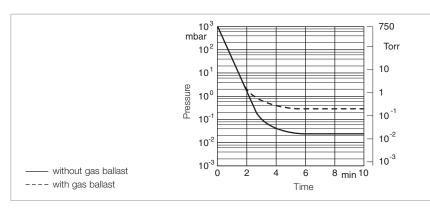
Applications and Accessories

65					250	AND	SERVINE SERVIN				16×
						MOS MOS	Star Children				20 20 20 20 20 20 20 20 20 20 20 20 20 2
						AND TO	Spire Co				
	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					THING C	Spirit Chi				2 AMA
						A A LANGE	RIVAC	- Ci			ALVA .
				- - - -	•						
					-						
					•					•	
					-					•	
		•									

Condensate traps / separators AK	C01.46/66											
Exhaust filters AF	C01.46/56		-	=	=	=		=	=	_	_	-
	1 1 1 1 1 1 1			_	_	_	_	_	_			
Exhaust filter drain tap	C01.44	_										
Oil drain tap	C01.44											
Oil drain kit	C01.44											
Oil suction facility 1) AR-V	C01.45											
Oil suction facility 1) AR-M	C01.45											
Dust separators AS	C01.48											
Molecular filters MF	C01.48											
Fine vacuum adsorption traps FA	C01.50											
Dust filters FS	C01.51											
Cold trap TK	C01.52											
Exhaust filters with lubricant return ARP / AR	C01.58											
Exhaust filters with lubricant return ARS	C01.59											
Mechanical oil filters OF	C01.60											
Chemical oil filters CF	C01.60											
Chemical filters with safety isolation valve CFS	C01.62											
Inert gas system IGS	C01.63											
Limit switch system LSS	C01.64											
Electrical indicator system EIS	C01.65											
Roots pump adaptor	C01.67											
Flange components, valves	C01.72											
Vacuum pump oils	C01.74											


¹⁾ For pumps with gas ballast only

Products


Small Compact Pump S 1,5

The S 1,5 is a single-stage, oil-sealed rotary vane pump with a gas ballast valve. It is driven by a flange mounted AC motor. The shaft of the pump and the shaft of the motor are linked by means of a pinned coupling.

Dimensional drawing for the S 1,5

Pump-down characteristics of a 10 I vessel at 50 Hz

Advantages to the User

- Very small and light-weight
- Low ultimate pressure
- High water vapor tolerance
- Low noise operation
- Simple to connect
- Easy to maintain and use

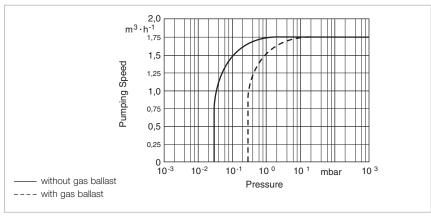
Typical Applications

- In all areas of vacuum engineering where a low intake pressure is
- Evacuation of refrigerant circuits
- For suction, lifting, emptying, filling and tensioning
- For installation in mobile instruments

Supplied Equipment

- DN 16 small flange connection on the intake side
- Centering ring and clamping ring
- Exhaust port designed as a DN 6 hose nozzle
- Carrying handle
- Built-in ON/OFF switch and overcurrent circuit breaker
- Oil filling

Technical Data \$ 1,5


		50 Hz	60 Hz
Nominal pumping speed 1)	m ³ x h ⁻¹ (cfm)	1.9 (1.1)	2.3 (1.3)
Pumping speed ¹⁾	m ³ x h ⁻¹ (cfm)	1.75 (1)	2.1 (1.2)
Ultimate partial pressure without gas ballast 1)	mbar (Torr)	3 x 10 ⁻² (2.3 x 10 ⁻²)	3 x 10 ⁻² (2.3 x 10 ⁻²)
Ultimate total pressure with gas ballast 1)	mbar (Torr)	5 x 10 ⁻¹ (3.8 x 10 ⁻¹)	5 x 10 ⁻¹ (3.8 x 10 ⁻¹)
Water vapor tolerance 1)	mbar (Torr)	> 15 (> 11.3)	> 15 (> 11.3)
Water vapor capacity	g/h (lbs/hr)	19 (42)	19 (42)
Oil filling, min. / max.	I (qt)	0.11 / 0.14	0.11 / 0.14
Admissible ambient temperatu	re °C (°F)	40 (104)	40 (104)
Motor rating	W (hp)	80 (0.11)	80 (0.11)
Nominal speed	rpm	1500	1800
Weight	kg (lbs)	10 (22.1)	10 (22.1)
Connections Intake Exhaust	DN	16 KF 6 mm hose	16 KF 6 mm hose

Ordering Information

S 1,5

S 1,5 with AC motor, 230 V (208-252 V ±5%), 50/60 Hz, with 2 m long mains cord and EURO plug	Part No. 101 01
Transition connector (250 V AC, 10 A, L+N+PE) only necessary in Switzerland for 1~ pumps	Part No. 800 001 274
AK 8 condensate trap	Part No. 190 60
Exhaust filter drain tap (G 1/4")	Part No. 190 95
Connection components Elbow (1x) DN 16 KF Centering ring with O-ring (2x) DN 16 KF Clamping ring (2x) DN 16 KF	Part No. 184 36 Part No. 183 26 Part No. 183 41

¹⁾ To DIN 28 400 and following numbers

Pumping speed characteristics at 50 Hz

TRIVAC E, Two-Stage, Oil-Sealed Rotary Vane Vacuum Pump

TRIVAC D 2.5 E

The TRIVAC E pump is an oil-sealed vacuum pump operating according to the rotary vane principle. Oil which is injected into the pump chamber is used for sealing, lubrication and cooling purposes.

New customers' requirements as well as increased environmental requirements gave rise to the further development of the successful range of TRIVAC B pumps.

The result is the TRIVAC E rotary vane vacuum pump.

Beyond the usual quality and reliability of the B series pumps, the TRIVAC E pump offers improvements in the area of quieter operation, smaller size and improved service-friendliness.

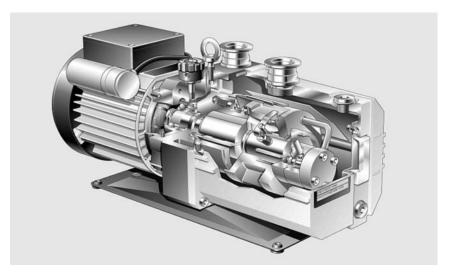
The intake and exhaust ports are equipped with small flanges. Besides standard voltages and frequencies, Oerlikon Leybold Vacuum offers world motors, which are specially required by OEMs.

The TRIVAC E pump includes also a set of accessories which also fit the TRIVAC D 4 - 16 B pumps.

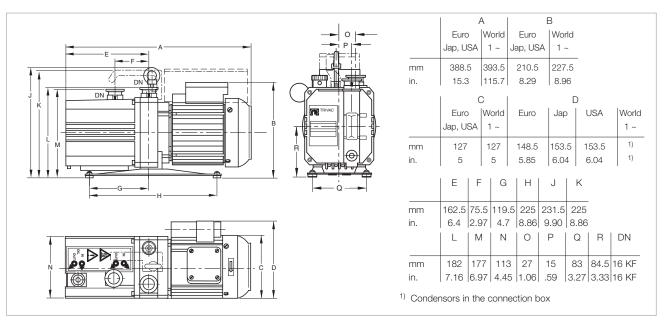
Advantages to the User

- Highly reliable
- Small and compact
- Quiet operation
- Environmentally compatible (low oil consumption, EMI compatible; IP 54 protection)
- Process quality (little backstreaming of oil)
- Motors for all standard supply voltages and frequencies
- Safe and intelligent vacuum protection (hermetically sealed)
- Free of yellow metals
- Compliance with international standards (CE and CSA)
- Suitable for continuous operation at 1000 mbar (750 Torr)
- Low power consumption
- Better individual performance given by 3 stage gas ballast device
- High water vapor tolerance
- Simplified customizing ability

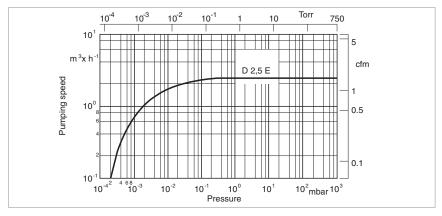
Typical Applications


- Mass spectrometers
- Electron beam microscopes
- Sterilizers
- Freeze-drying systems
- Chemical and research labs
- TV tube
- General vacuum engineering
- Backing pump for high vacuum pump systems

Supplied Equipment


- Dirt trap
- Oil filling included separately (standard N 62; special oil HE-200 in the U.S.)
- Gas ballast device
- Main cord with the specific plug for Euro, USA and Japan motors
- Optional: Main cord with country specific plug for the world motor
- With handle

ALL PUMPS ARE SUBJECTED TO A VACUUM TEST BEFORE DELIVERY!


TRIVAC D 2,5 E

TRIVAC E

Dimensional drawing for the TRIVAC D 2,5 $\rm E$

Pumping speed of the TRIVAC D 2,5 E at 50 Hz (60 Hz curves at the end of the section)

Technical Data

TRIVAC D 2,5 E

		50 Hz	60 Hz
Nominal pumping speed 1)	m ³ x h ⁻¹ (cfm)	3.2 (1.9)	3.6 (2.1)
Pumping speed ¹⁾	m ³ x h ⁻¹ (cfm)	2.7 (1.6)	3.3 (1.9)
Ultimate partial pressure without gas ballast	mbar (Torr)	$\leq 5 \times 10^{-4} (\leq 3.8 \times 10^{-4})$	≤ 5 × 10 ⁻⁴ (≤ 3.8 × 10 ⁻⁴)
Ultimate total pressure without gas ballast ²⁾	mbar (Torr)	$\leq 2 \times 10^{-3} (\leq 1.5 \times 10^{-3})$	≤ 2 x 10 ⁻³ (≤ 1.5 x 10 ⁻³)
Ultimate total pressure with gastep 2 ²⁾	as ballast mbar (Torr)	$\leq 3 \times 10^{-2} (\leq 2.3 \times 10^{-2})$	≤ 3 × 10 ⁻² (≤ 2.3 × 10 ⁻²)
Water vapor tolerance Step 1 Step 2 Step 3	mbar (Torr) mbar (Torr) mbar (Torr)	10 (7.5) 20 (15) 30 (22.5)	10 (7.5) 20 (15) 30 (22.5)
Water vapor capacity Step 1 Step 2 Step 3	g/h g/h g/h	20 40 60	20 40 60
Oil filling, max. / min.	I (qt)	0.7 / 0.4 (0.7 / 0.4)	0.7 / 0.4 (0.7 / 0.4)
Noise level	dB(A)	≤ 47	≤ 47
Admissible ambient temperatu	ıre °C (°F)	10 to 50 (50 - 122) (Euro motor) / 10 to 40 (50 - 104) (USA/Japan motor)	10 to 50 (50 - 122) (Euro motor) / 10 to 40 (50 - 104) (USA/Japan motor)
Motor rating 50/60 Hz	W (HP)	250 (0.34)	300 (0.41)
Nominal speed 50/60 Hz	rpm	1400	1600
Type of protection	IP	54	54
Weight (with oil filling)	kg (lbs)	15.3 (33.7)	15.3 (33.7)
Dimensions (W x H x D)	mm (in.)	127 x 225 x 383 (5 x 8.86 x 15)	127 x 225 x 383 (5 x 8.86 x 15)
Connections (Intake and Exha	ust) DN	16 KF	16 KF

¹⁾ To DIN 28 426 T1

Motor Dependent Data

Motors fo D 2,5 E	or	Voltage (V)	Frequency (Hz)	Voltage tolerance	Power consumption (W (HP))	Nominal current (A)	Protection	Nominal speed (rpm)
Euro 1	1 ~	220-240/230	50/60	+/- 5 %	250/300 (0.34/0.41)	1.8/1.4	IP 54	1400/1600
Japan 1	1 ~	100	50/60	+/- 5 %	250/300 (0.34/0.41)	5.5/4.0	IP 54	1400/1600
USA 1	1 ~	110-120	60	+/- 5 %	300 (0.41)	3.3	IP 54	1600
World 1	1 ~	100-120; 200-240	50/60	+/- 5 %	250/300 (0.34/0.41)	4.4/3.0 2.2/1.5	IP 54	1400/1600

²⁾ To DIN 28 400 and following numbers

Ordering Information

TRIVAC D 2,5 E

TRIVAC E with 1.8 m (6 ft.) long mains cord	
Euro version, 1-ph., 220-240 V,	
50 Hz; 230 V, 60 Hz	
Earthed plug	Part No. 140 000
UK plug	Part No. 140 004
CH plug	Part No. 140 005
USA version, 1-ph., 110-120 V, 60 Hz,	
NEMA plug	Part No. 140 002
Japan version,1-ph., 100 V, 50/60 Hz,	
NEMA plug	Part No. 140 003
Single phase world motor,	
100-120 V, 200-240 V 50/60 Hz	
(without mains cord)	Part No. 140 001
Further variants upon request	
Accessories	
Connection cable for single phase	
world motor	
230 V earthed plug	Part No. 200 81 091
230 V UK plug	Part No. 200 81 097
230 V CH plug	Part No. 200 81 099
230 V NEMA plug (200-240 V)	Part No. 200 81 141
115 V NEMA plug (100-120 V)	Part No. 200 81 090
Exhaust filter AF 8	Part No. 190 50
Replacement filter elements FE 8	
for AF 8 (pack of 5)	Part No. 190 80
Exhaust filter drain tap (G 1/4")	Part No. 190 95
Manual oil return AR-M via	
gas ballast inlet (kit for AF 8-16)	Part No. 190 93
Oil suction AR-V controlled by a	
solenoid valve via the gas ballast inlet	
(kit for AF 8-16)	Part No. 190 92
Condensate trap AK 8	Part No. 190 60
Oil drain tap (M 16 x 1.5)	Part No. 190 90
Oil drain kit (M 16 x 1.5)	Part No. 190 94
<u> </u>	
Connection components Elbow (1x) DN 16 KF	Part No. 184 36
Centering ring with O-ring (2x) DN 16 KF	Part No. 184 36
Clamping ring (2x) DN 16 KF	Part No. 183 41
Spare Parts	Part No. 105 41
•	Part No. 200 40 022
Maintenance kit 1	Part No. 200 40 022
(oil demister, oil box seal)	
Repair set 1	Part No. E 100 000 351
(motor side sealing, shaft sealing ring,	
coupling sleeves, compression spring)	
Repair set 2	Part No. 200 40 024
(valves, oil demister, oil box seal)	
Repair set 3	Part No. E 100 000 347
	Fait No. E 100 000 347
(oil demister, sealing, wearing parts)	
For further accessories see Section	
"Accessories for TRIVAC E and B"	

TRIVAC B, Two-Stage Rotary Vane Vacuum Pumps TRIVAC D 4 B to D 65 B

The TRIVAC B is the logical step ahead within the well-proven TRIVAC concept. Here the performance and the characteristics of the pumps have been adapted without compromise to market requirements. The TRIVAC B pumps with their comprehensive range of accessories have proven themselves time and again as rugged pumps in many and varied applications.

The inner body is assembled from individual parts without sealing components. The parts are pinned in order to ensure easy disassembly and reassembly of the parts.

All pumps from the D 4 B to the D 25 B model are equipped either with single-phase or three-phase motors. D 40 - 65 B models are equipped with three-phase motors. Moreover, all pumps of the B series are available also without the motor.

In the TRIVAC B, the pump unit and the motor are linked by an elastic coupling.

The TRIVAC B range is a modular system which divides into three groups:

TRIVAC 4/8 Series TRIVAC 16/25 Series TRIVAC 40/65 Series

Advantages to the User

- All basic models (single-phase and three-phase motor) are certified in accordance with 94/9/EG (ATEX) (Category 3 inside)
- High water vapor tolerance
- Continuous operation even at 1000 mbar
- Built-in oil pump; pressurelubricated sliding bearings
- All controls as well as the oil sight glass are located on the front face
- Either vertical or horizontal intake and exhaust ports
- Exchangeable inner body
- Anti-suckback valve controlled via the oil pressure
- Free of yellow metals
- Service-friendly
- Ideal as backing pump for medium and high vacuum applications, because of low oil backstreaming
- Highly leaktight (He-3-capable)

Typical Applications

See section "General, Applications and Accessories"

Supplied Equipment

Small flanges, centering and clamping rings. The intake flange contains a dirt trap.

A carrying handle is standard for all pumps up to the D 25 B. TRIVAC B pumps with single-phase motors are delivered with ON/OFF switch, main cord and main plug, ready for immediate operation.

Standard TRIVAC B pumps come with a filling of N 62 special oil (HE-200 in the U.S.), others with special oil fillings can be specified.

ALL PUMPS ARE SUBJECTED TO A VACUUM TEST BEFORE DELIVERY!

Custom Models

- ATEX (Category 3 inside and 3 outside)
- Brake fluid
- Oils for refrigerating machines, e.g. ester oils for refrigerant circuits with R 134 a

Pressure burst resistant (for the new refrigerants propane and isobutane)

- He-3-tight (for cryostats)
- Special motors

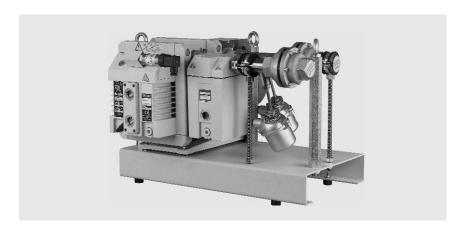
TRIVAC D 16 B-DOT

The TRIVAC B-DOT pumps operate with brake fluid (DOT 4) as the sealing and lubricating agent. Therefore these pumps are equipped with EPDM seals. EPDM is highly compatible with brake

As to the D 8 B-DOT, D 25 B-DOT and D 40 B-DOT please ask us for a quotation.

Advantages to the User

- Matching exhaust filters with EPDM gaskets (AF-DOT)
- Except for the seals and the fluid the TRIVAC B-DOT pumps are identical to the oil-sealed TRIVAC B pumps


Typical Applications

- For filling of brake fluid circuits in the automotive industry

Supplied Equipment

- The brake fluid is inside the pump when shipped

TRIVAC D 16 B-Ex, Explosion Protected and Pressure Burst Resistant

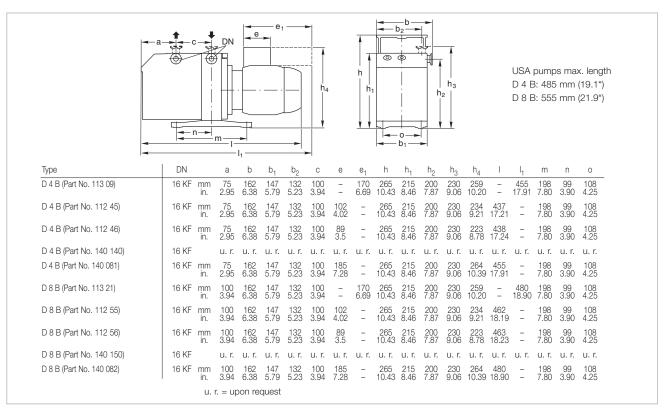
Category 1 inside and 2 outside

Typical Applications

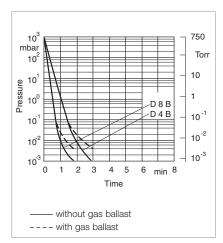
Pumping of gases belonging to Group IIB3 and IIC 1) from Zone 0

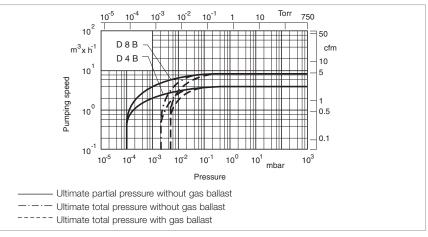

Vacuum pumps TRIVAC D 16 B-Ex meet the requirements of the European Directive 94/9/EG (ATEX Directive). TRIVAC D 16 B-Ex pumps are classified inside as Category 1, outside as Category 2. Thus these pumps are suited for pumping explosive gases from Zone 0, the pump itself may be located in Zone 1.

The vacuum pumps TRIVAC D 16 B-Ex are qualified for gases of Explosion Groups IIC 1) and IIB3. The temperature class is T4. TRIVAC D 16 B-Ex pumps are explosion resistant and correspond to the state-of-the-art. They are equipped as standard with one each temperature sensor on the intake and delivery side.


Moreover, the pressure inside the pump is monitored. Flame arresters on the intake and delivery side protect the upstream and downstream system sections. Also provided as standard is an exhaust filter for every pump.

1) with the exception of acetylene and carbon bisulphide


TRIVAC D 4 B and D 8 B


TRIVAC D 4 B (left) and TRIVAC D 8 B (right)

Dimensional drawing for the TRIVAC D 4 B and D 8 B

Pump-down characteristics of a 10 I vessel at 50 Hz

Pumping speed characteristics at 50 Hz (60 Hz curves at the end of the section)

Technical Data

TRIVAC D 4 B two-stage

TRIVAC D 8 B two-stage

		50 Hz	60 Hz	50 Hz	60 Hz
Nominal pumping speed 1) m	n ³ x h ⁻¹ (cfm)	4.8 (2.8)	5.8 (3.4)	9.7 (5.7)	11.6 (6.9)
Pumping speed ¹⁾	n ³ x h ⁻¹ (cfm)	4.2 (2.5)	5 (3)	8.5 (5)	10.2 (6)
Ultimate partial pressure without gas ballast 1)	mbar (Torr)	10 ⁻⁴ (0.75 x 10 ⁻⁴)			
Ultimate total pressure without gas ballast 1)	mbar (Torr)	< 2 x 10 ⁻³ (< 1.5 x 10 ⁻³)	< 2 x 10 ⁻³ (< 1.5 x 10 ⁻³)	< 2 x 10 ⁻³ (< 1.5 x 10 ⁻³)	< 2 x 10 ⁻³ (< 1.5 x 10 ⁻³)
Ultimate total pressure with gas ballast 1)	mbar (Torr)	< 5 x 10 ⁻³ (< 3.8 x 10 ⁻³)	< 5 x 10 ⁻³ (< 3.8 x 10 ⁻³)	< 5 x 10 ⁻³ (< 3.8 x 10 ⁻³)	< 5 x 10 ⁻³ (< 3.8 x 10 ⁻³)
Water vapor tolerance 1)	mbar (Torr)	30 (22.5)	30 (22.5)	25 (18.8)	25 (18.8)
Water vapor capacity	g/h	93	93	157	157
Oil filling, min. / max.	I (qt)	0.3 / 0.8 (0.3 / 0.85)	0.3 / 0.8 (0.3 / 0.85)	0.3 / 0.9 (0.3 / 0.95)	0.3 / 0.9 (0.3 / 0.95)
Noise level ²⁾ to DIN 45 635, without / with gas ballast	dB(A)	50 / 52	50 / 52	50 / 52	50 / 52
Admissible ambient temperature	e °C (°F)	12 - 40 (54 - 104)	12 - 40 (54 - 104)	12 - 40 (54 - 104)	12 - 40 (54 - 104)
Motor rating ²⁾	W (HP)	370 (0.50)	370 (0.50)	370 (0.50)	370 (0.50)
Nominal speed	rpm	1500	1800	1500	1800
Type of protection 3)	IP	54	54	54	54
Weight ²⁾	kg (lbs)	18.7 (41.2)	18.7 (41.2)	21.2 (46.7)	21.2 (46.7)
Connections, Intake and Exhaus	st DN	16 KF	16 KF	16 KF	16 KF

¹⁾ To DIN 28 400 and following numbers

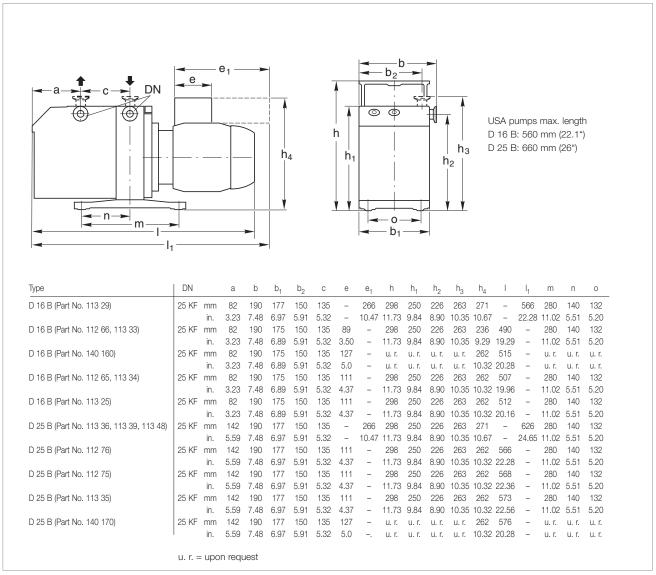
²⁾ Weight, motor rating and noise levels for the pumps with global version 230 V, 50 Hz AC motor only. Any data that deviate from the above for pumps with other motors, and other motor-dependent data are given in section "Products", paragraph "Motor Dependent Data for the TRIVAC B, BCS and BCS-PFPE"

³⁾ Global versions only. North and South American versions are TEFC

Ordering Information	TRIVAC D 4 B	TRIVAC D 8 B			
	two-stage	two-stage			
TRIVAC B					
without motor	Part No. 113 07	Part No. 113 17			
with 1-phase motor 230 V, 50 Hz ¹⁾	Part No. 112 45	Part No. 112 55			
with 3-phase motor 230/400 V, 50 Hz / 250/440 V, 60 Hz ¹⁾ 230/400 V, 50 Hz,	Part No. 112 46	Part No. 112 56			
ATEX Category 3 inside and 3 outside inside: II (i) 3G IIC T4 (50 Hz) outside: II (o) 3G IIC T3 (50 Hz) with dual voltage motor ² 100-120 V, 50/60 Hz and 200-240 V, 50/60 Hz	Part No. 140 140 Part No. 140 081 ²⁾	Part No. 140 150 Part No. 140 082 ²⁾			
Mains cord for dual voltage motor ²⁾					
230 V earthed plug	Part No. 200 81 091	Part No. 200 81 091			
230 V UK plug	Part No. 200 81 097	Part No. 200 81 097			
230 V CH plug	Part No. 200 81 099	Part No. 200 81 099			
230 V NEMA plug (200-240 V)	Part No. 200 81 141	Part No. 200 81 141			
115 V NEMA plug (100-120 V)	Part No. 200 81 090	Part No. 200 81 090			
Transition connector (250 V AC, 10 A, L+N+PE) only necessary in Switzerland for 1~ pumps	Part No. 800 001 274	Part No. 800 001 274			
Accessories					
FS 2-4 dust filter	Part No. 186 05	Part No. 186 05			
FA 2-4 fine vacuum adsorption trap	Part No. 187 05	Part No. 187 05			
Adsorption trap with aluminium oxide	Part No. 854 14	Part No. 854 14			
Activated aluminium oxide, 1.3 kg (2 l approx.)	Part No. 854 10	Part No. 854 10			
TK 4-8 cold trap	Part No. 188 20	Part No. 188 20			
AF 4-8 exhaust filter	Part No. 189 06	Part No. 189 06			
AR 4-8 exhaust filter with lubricant return	Part No. 189 20	Part No. 189 20			
AK 4-8 condensate trap	Part No. 188 06	Part No. 188 06			
OF 4-25 mechanical oil filter	Part No. 101 91	Part No. 101 91			
CF 4-25 chemical oil filter	Part No. 101 96	Part No. 101 96			
Connector for gas ballast inlet M 16 x 1.5 – DN 16 KF	Part No. 168 40	Part No. 168 40			
Oil drain tap M 16 x 1.5	Part No. 190 90	Part No. 190 90			
Spare Parts					
Inside section	Part No. E 200 10 989	Part No. E 200 10 991			
Seal kit	Part No. 197 20	Part No. 197 20			

 $^{^{1)}\,}$ Certification after 94/9/EG (ATEX), Category 3 inside. Inside: II (i) 3G IIC T4 (50 Hz), T3 (60 Hz)

 $^{^{2)}\,}$ A mains cord needs to be ordered additionally


Only available for purchase in North and South America

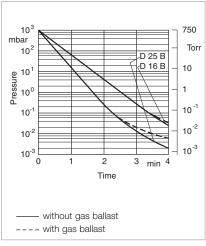
Ordering Information	TRIVAC D 4 B two-stage	TRIVAC D 8 B two-stage
TRIVAC B		
with 1-phase motor		
115 V, 60/50 Hz, NEMA plug	Part No. 912 45-1	Part No. 912 55-1
208-230 V, 60/50 Hz, NEMA plug	Part No. 912 45-2	Part No. 912 55-2
with 3-phase motor		
208-230/460 V, 60 Hz /		
200-220/380 V, 50 Hz	Part No. 912 46-2	Part No. 912 56-2

TRIVAC D 16 B and D 25 B

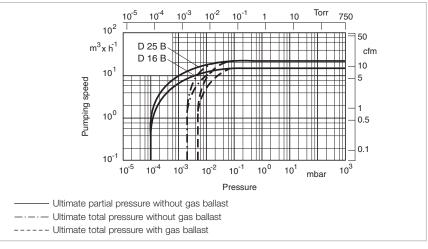
TRIVAC D 16 B (left) and TRIVAC D 25 B (right)

Dimensional drawing for the TRIVAC D 16 and D 25 B

Technical Data


TRIVAC D 16 B two-stage

TRIVAC D 25 B two-stage


		50 Hz	60 Hz	50 Hz	60 Hz
Nominal pumping speed ¹⁾ m ³	x h ⁻¹ (cfm)	18.9 (11.1)	22.7 (13.4)	29.5 (17.4)	35.4 (20.9)
Pumping speed ¹⁾ m ³	x h ⁻¹ (cfm)	16.5 (9.7)	19.8 (11.7)	25.7 (15.1)	30.8 (18.2)
Ultimate partial pressure without gas ballast 1)	mbar (Torr)	10 ⁻⁴ (0.75 x 10 ⁻⁴)			
Ultimate total pressure without gas ballast 1)	mbar (Torr)	< 2 x 10 ⁻³ (1.5 x 10 ⁻³)	< 2 x 10 ⁻³ (1.5 x 10 ⁻³)	< 2 x 10 ⁻³ (1.5 x 10 ⁻³)	< 2 x 10 ⁻³ (1.5 x 10 ⁻³)
Ultimate total pressure with gas ballast 1)	mbar (Torr)	< 5 x 10 ⁻³ (3.8 x 10 ⁻³)	< 5 x 10 ⁻³ (3.8 x 10 ⁻³)	< 5 x 10 ⁻³ (3.8 x 10 ⁻³)	< 5 x 10 ⁻³ (3.8 x 10 ⁻³)
Water vapor tolerance 1)	mbar (Torr)	25 (18.8)	25 (18.8)	25 (18.8)	25 (18.8)
Water vapor capacity	g/h	305	305	476	476
Oil filling, min. / max.	I (qt)	0.5 / 1.0 (0.5 / 1.1)	0.5 / 1.0 (0.5 / 1.1)	0.6 / 1.4 (0.6 / 1.5)	0.6 / 1.4 (0.6 / 1.5)
Noise level ²⁾ to DIN 45 635, without / with gas ballast	dB(A)	52 / 62	52 / 62	52 / 62	52 / 62
Admissible ambient temperature	°C (°F)	12 - 40 (54 - 104)	12 - 40 (54 - 104)	12 - 40 (54 - 104)	12 - 40 (54 - 104)
Motor rating ²⁾	W (HP)	550 - 750 (0.75 - 1.0)	550 - 750 (0.75 - 1.0)	750 (1)	750 (1)
Nominal speed	rpm	1500	1800	1500	1800
Type of protection ³⁾	IP	54	54	54	54
Weight ²⁾	kg (lbs)	26 (57.3)	26 (57.3)	32 (70.6)	32 (70.6)
Connections, Intake and Exhaust	DN	25 KF	25 KF	25 KF	25 KF

¹⁾ To DIN 28 400 and following numbers

³⁾ Global versions only. North and South American versions are TEFC

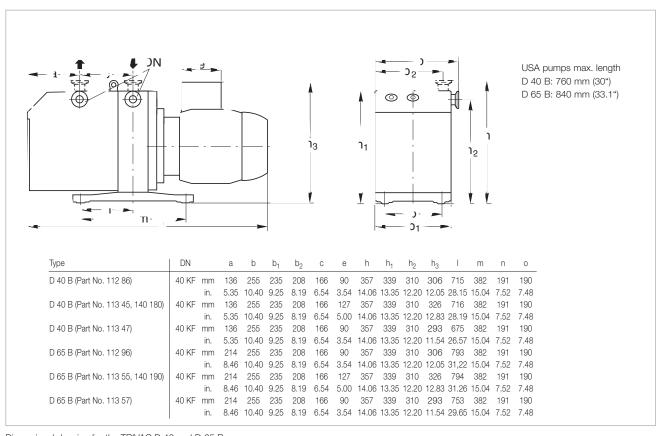
Pumping speed characteristics at 50 Hz (60 Hz curves at the end of the section)

Weight, motor rating and noise levels for the pumps with global version AC motor, 50 Hz, only. Any data that deviate from the above for pumps with other motors, and other motor-dependent data are given in section "Products", paragraph "Motor Dependent Data for the TRIVAC B, BCS and BCS-PFPE"

Ordering Information	TRIVAC D 16 B	TRIVAC D 25 B
	two-stage	two-stage
TRIVAC B		
without motor	Part No. 113 28	Part No. 113 38
with 1-phase motor	D 140.05	
230 V, 50 Hz ¹⁾	Part No. 112 65	Port No. 440 05 2) / 440 75
230 V, 50/60 Hz ¹⁾	Part No. 113 25 ²⁾	Part No. 113 35 ²⁾ / 112 75
100 V, 50 Hz / 110 V, 60 Hz	upon request	upon request
115 V, 60 Hz	-	Part No. 113 48
with 3-phase motor	Down No. 440 66	Down No. 440.76
230/400 V, 50 Hz / 250/440 V, 60 Hz ¹⁾	Part No. 112 66	Part No. 112 76
230/400 V, 50 Hz / 250/440 V, 60 Hz	Part No. 113 33 (RCF - E96N)	_
200/346 V, 50 Hz / 208/360 V, 60 Hz	Part No. 113 34 (RCF - E96N)	_
230/400 V, 50 Hz,	Down No. 440 460	Dord No. 440 470
ATEX Category 3 inside and 3 outside	Part No. 140 160	Part No. 140 170
inside: II (i) 3G IIC T4 (50 Hz)		
outside: II (o) 3G IIC T3 (50 Hz)		
Accessories		
FS 8-16 dust filter	Part No. 186 10	Part No. 186 10
AS 8-16 dust separator	Part No. 186 11	Part No. 186 11
MF 8-16 molecular filter	Part No. 186 12	Part No. 186 12
FA 8-16 fine vacuum adsorption trap	Part No. 187 10	Part No. 187 10
Adsorption trap with aluminium oxide	Part No. 854 15	Part No. 854 15
Activated aluminium oxide,		
1.3 kg (2 l approx.)	Part No. 854 10	Part No. 854 10
AF 16-25 exhaust filter	Part No. 189 11	Part No. 189 11
AF 10-25 extraust litter		1 411 1101 100 11
AR 16-25 exhaust filter with		
ubricant return	Part No. 189 21	Part No. 189 21
AK 16-25 condensate trap	Part No. 188 11	Part No. 188 11
OF 4-25 mechanical oil filter	Part No. 101 91	Part No. 101 91
CF 4-25 chemical oil filter	Part No. 101 96	Part No. 101 96
Connector for gas ballast inlet		
M 16 x 1.5 – DN 16 KF	Part No. 168 40	Part No. 168 40
	Part No. 190 90	Part No. 190 90
Oil drain tap	1 411 100 00	1 411 101 100 00
Spare Parts		
nside section		
Seal kit		

 $^{^{1)}\,}$ Certification after 94/9/EG (ATEX), Category 3 inside. Inside: II (i) 3G IIC T4 (50 Hz), T3 (60 Hz)

²⁾ with cable Euro-Schuko. Other cables upon request


Only available for purchase in North and South America

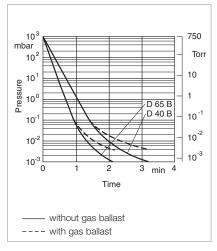
Ordering Information	TRIVAC D 16 B	TRIVAC D 25 B
	two-stage	two-stage
TRIVAC B		
with 1-phase motor		
115 V, 60/50 Hz, NEMA plug	Part No. 912 65-1	Part No. 912 75 V 001
208-230 V, 60/50 Hz, NEMA plug	Part No. 912 65-2	Part No. 912 75-2
with 3-phase motor		
208-230/460 V, 60 Hz /		
200-220/380 V, 50 Hz	Part No. 912 66-2	Part No. 912 76-2

TRIVAC D 40 B and D 65 B

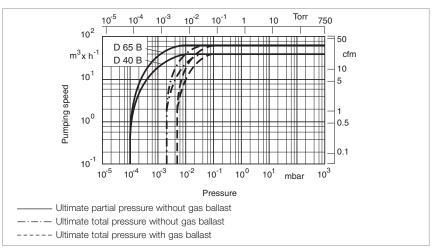
TRIVAC D 40 B (left) and TRIVAC D 65 B (right)

Dimensional drawing for the TRIVAC D 40 and D 65 B

Technical Data


TRIVAC D 40 B two-stage

TRIVAC D 65 B two-stage


		50 Hz	60 Hz	50 Hz	60 Hz
Nominal pumping speed ¹⁾ m	³ x h ⁻¹ (cfm)	46 (27)	55 (32.5)	75 (44)	90 (53)
Pumping speed ¹⁾ m	³ x h ⁻¹ (cfm)	40 (24)	48 (28)	65 (38)	78 (46)
Ultimate partial pressure without gas ballast 1)	mbar (Torr)	10 ⁻⁴ (0.75 x 10 ⁻⁴)			
Ultimate total pressure without gas ballast 1)	mbar (Torr)	< 2 x 10 ⁻³ (< 1.5 x 10 ⁻³)	< 2 x 10 ⁻³ (< 1.5 x 10 ⁻³)	< 2 x 10 ⁻³ (< 1.5 x 10 ⁻³)	< 2 x 10 ⁻³ (< 1.5 x 10 ⁻³)
Ultimate total pressure with gas ballast 1)	mbar (Torr)	< 5 x 10 ⁻³ (< 3.8 x 10 ⁻³)	< 5 x 10 ⁻³ (< 3.8 x 10 ⁻³)	< 5 x 10 ⁻³ (< 3.8 x 10 ⁻³)	< 5 x 10 ⁻³ (< 3.8 x 10 ⁻³)
Water vapor tolerance 1)	mbar (Torr)	40 (30)	40 (30)	40 (30)	40 (30)
Water vapor capacity	g/h	1184	1184	1925	1925
Oil filling, min. / max.	I (qt)	1.7 / 2.6 (1.8 / 2.7)	1.7 / 2.6 (1.8 / 2.7)	2.0 / 3.3 (2.1 / 3.5)	2.0 / 3.3 (2.1 / 3.5
Noise level ²⁾ to DIN 45 635, without / with gas ballast	dB(A)	57 / 59	57 / 59	57 / 59	57 / 59
Admissible ambient temperature	°C (°F)	12 - 40 (54 - 104)	12 - 40 (54 - 104)	12 - 40 (54 - 104)	12 - 40 (54 - 104)
Motor rating ²⁾	W (HP)	2200 (3.0)	2200 (3.0)	2200 (3.0)	2200 (3.0)
Nominal speed	rpm	1420	1710	1420	1710
Type of protection ³⁾	IP	54	54	54	54
Weight ²⁾	kg (lbs)	68 (150)	68 (150)	80 (177)	80 (177)
Connections, Intake and Exhaus	t DN	40 KF	40 KF	40 KF	40 KF

¹⁾ To DIN 28 400 and following numbers

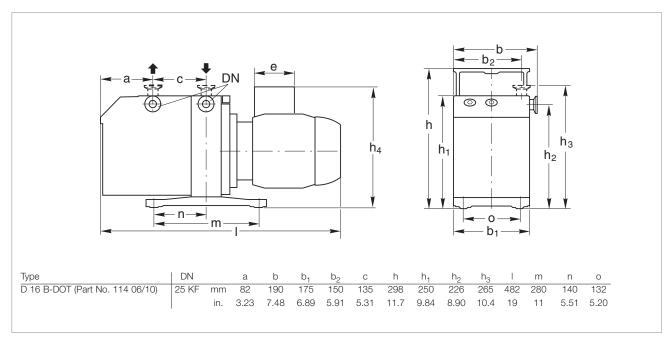
³⁾ Global versions only. North and South American versions are TEFC

Pumping speed characteristics at 50 Hz (60 Hz curves at the end of the section)

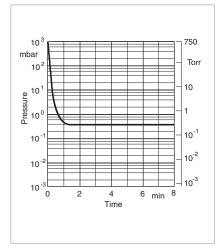
Weight, motor rating and noise levels for the pumps with global version 3-phase motor, 50 Hz, only. Any data that deviate from the above for pumps with other motors, and other motor-dependent data are given in section "Products", paragraph "Motor Dependent Data for the TRIVAC B, BCS and BCS-PFPE"

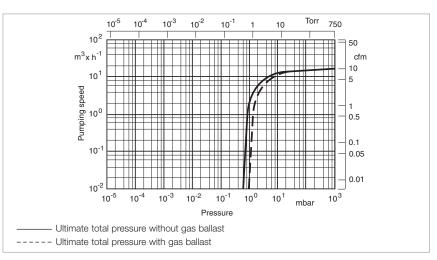
Ordering Information	TRIVAC D 40 B	TRIVAC D 65 B
	two-stage	two-stage
TRIVAC B		
without motor	Part No. 113 46	Part No. 113 56
with 3-phase motor		
230/400 V, 50 Hz / 250/440 V, 60 Hz ¹⁾	Part No. 112 86	Part No. 112 96
200/346 V, 50 Hz / 208/360 V, 60 Hz	Part No. 113 47	Part No. 113 57
230/400 V, 50 Hz,		
ATEX Category 3 inside and 3 outside	Part No. 140 180	Part No. 140 190
inside: II (i) 3G IIC T4 (50 Hz)		
outside: II (o) 3G IIC T3 (50 Hz)		
Accessories		
Roots pump adaptor	Part No. 168 30	Part No. 168 30
FS 30-60 dust filter	Part No. 186 15	Part No. 186 15
AS 30-60 dust separator	Part No. 186 16	Part No. 186 16
MF 30-60 molecular filter	Part No. 186 17	Part No. 186 17
FA 30-60 fine vacuum adsorption trap	Part No. 187 15	Part No. 187 15
Adsorption trap with aluminium oxide	Part No. 854 16	Part No. 854 16
Activated aluminium oxide,		
1.3 kg (2 l approx.)	Part No. 854 10	Part No. 854 10
AF 40-65 exhaust filter	Part No. 189 16	Part No. 189 16
AR 40-65 exhaust filter with		
lubricant return	Part No. 189 22	Part No. 189 22
AK 40-65 condensate trap	Part No. 188 16	Part No. 188 16
OF 40-65 mechanical oil filter	Part No. 101 92	Part No. 101 92
CF 40-65 chemical oil filter	Part No. 101 97	Part No. 101 97
Connector for gas ballast inlet		
M 16 x 1.5 – DN 16 KF	Part No. 168 40	Part No. 168 40
Oil drain tap	Part No. 190 90	Part No. 190 90
Spare Parts		
Inside section	Part No. E 200 10 933	Part No. E 200 10 944
Seal kit	Part No. 197 22	Part No. 197 22

¹⁾ Certification after 94/9/EG (ATEX), Category 3 inside. Inside: II (i) 3G IIC T4 (50 Hz), T3 (60 Hz)


Only available for purchase in North and South America

Ordering Information	TRIVAC D 40 B	TRIVAC D 65 B two-stage	
	two-stage		
TRIVAC B			
with 3-phase motor			
208-230/460 V, 60 Hz /	Part No. 040 00 0	Down No. 040 OC 0	
200-220/380 V, 50 Hz	Part No. 912 86-2	Part No. 912 96-2	


TRIVAC D 16 B-DOT


TRIVAC D 16 B-DOT

Dimensional drawing for the TRIVAC D 16 B-DOT

Pump-down characteristics of a 10 I vessel at 50 Hz

Pumping speed characteristics at 50 Hz (60 Hz curves at the end of the section)

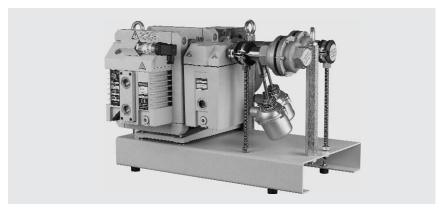
Technical Data

TRIVAC D 16 B-DOT

		50 Hz	60 Hz
Nominal pumping speed 1) m	³ x h ⁻¹ (cfm)	18.9 (11.1)	22.7 (13.4)
Pumping speed ¹⁾ m	³ x h ⁻¹ (cfm)	16.5 (9.7)	19.8 (11.7)
Ultimate total pressure without gas ballast ¹⁾	mbar (Torr)	< 6 x 10 ⁻¹ (< 4.5 x 10 ⁻¹)	< 6 x 10 ⁻¹ (< 4.5 x 10 ⁻¹)
Ultimate total pressure with gas ballast 1)	mbar (Torr)	< 9 x 10 ⁻¹ (< 6.75 x 10 ⁻¹)	< 9 x 10 ⁻¹ (< 6.75 x 10 ⁻¹)
Water vapor tolerance 1)	mbar (Torr)	25 (18.75)	25 (18.75)
Water vapor capacity	g/h	259	259
Brake fluid filling, min. / max.	I (qt)	0.45 / 1.0 (0.5 / 1.1)	0.45 / 1.0 (0.5 / 1.1)
Noise level to DIN 45 635, without / with gas ballast	dB(A)	52 / 52	52 / 52
Admissible ambient temperature	°C (°F)	12 - 40 (54 - 104)	12 - 40 (54 - 104)
Motor rating	W (HP)	550 (0.75)	550 (0.75)
Nominal speed	rpm	1500	1800
Type of protection ²⁾	IP	54	54
Weight	kg (lbs)	26 (57.3)	26 (57.3)
Connections, Intake and Exhaus	t DN	25 KF	25 KF

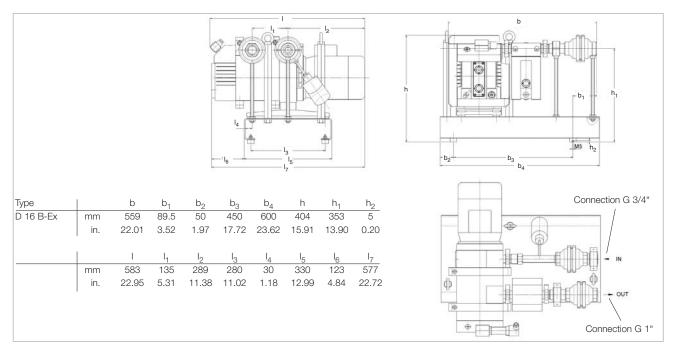
Ordering Information

TRIVAC D 16 B-DOT


	Global Version	North and South America Version
TRIVAC B-DOT		
with 3-phase motor		
230/400 V, 50 Hz; 250/440 V, 60 Hz	Part No. 114 06	
230/400 V, 50 Hz; 250/440 V, 60 Hz	Part No. 114 10 (with float switch)	-
with 1-phase motor 115 V, 60 Hz	_	Part No. 914 62
with 3-phase motor 208-230/460 V, 60 Hz		
208-220/380 V, 50 Hz	_	Part No. 914 63
AF 16-25 DOT exhaust filter	Part No. 124 16	Part No. 124 16
AK 16 DOT condensate trap	Part No. 110 78	Part No. 110 78
Seal kit	Part No. 200 39 059	Part No. 200 39 059

¹⁾ To DIN 28 400 and following numbers

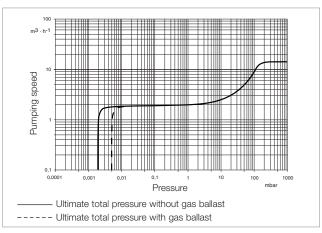
As to the D 8 B-DOT, D 25 B-DOT and D 40 B-DOT please ask us for a quotation.


 $^{^{2)}\,}$ Global versions only. North and South American versions are TEFC

TRIVAC D 16 B-Ex (Explosion Protected and Pressure Burst Resistant)



Category 1 inside and 2 outside


TRIVAC D 16 B-Ex

Dimensional drawing for the TRIVAC 16 B-Ex (explosion protected and pressure burst resistant)

Pumping speed characteristics of TRIVAC D 16 B-Ex [IIB3 T4] (Part No. 140 091)

Pumping speed characteristics of TRIVAC D 16 B-Ex [IIC T4] (Part No. 140 092)

Technical Data

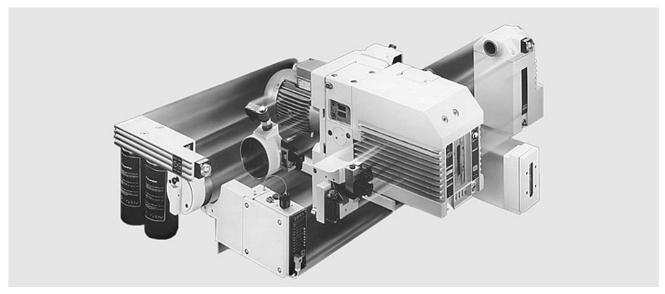
TRIVAC D 16 B-Ex

(Explosion Protected and Pressure Burst Resistant) Two-Stage

Nominal pumping speed ¹⁾ m ³ x h ⁻¹ (cfm)	18.9 (11.1)
Pumping speed (for Part No. 140 091 / 140 092) 1)	
m ³ x h ⁻¹ (cfm)	16 / 15 (9.4/8.8)
Ultimate total pressure without gas ballast 1) mbar (Torr)	1 x 10 ⁻⁴ (< 0.75 x 10 ⁻³)
Ultimate total pressure with gas ballast 1) mbar (Torr)	< 5 x 10 ⁻³ (< 3.8 x 10 ⁻³)
Water vapor tolerance 1) mbar (Torr	25 (18.75)
Water vapor capacity gm/h	305
Oil filling, min. / max.	0.55 / 1.3 (0.58 / 1.4)
Motor	3~, 230 V / 400 V, 50 Hz, EEx e II T4
Type of protection IF	54
Maximum gas inlet temperature °C (°F)	60 (260)
Highest permissible pressure in the oil box mbar (Torr)	500 (375)
Ambient temperature (t _a) °C (°F)	12 - 40 (46 - 104)
Maximum surface temperature °C (°F)	135 (275)
Max. Inlet pressure mbar (Torr	Atmospheric pressure
Weight (complette systems) kg (lbs)	72 (159)
Connections Intake side Pressure side Inside thread Inside thread	

Ordering Information

TRIVAC D 16 B-Ex


(Explosion Protected and Pressure Burst Resistant) Two-Stage

TRIVAC D 16 B-Ex IIB3 T4	
in accordance with 94/9/EC	Part No. 140 091
[$\langle E_X \rangle$ II inside: 1G IIB3 T4	
outside: 2G IIB T4	
(12 °C < t_a < 40 °C) X	
EC Type Examination Certificate:	
IBExU03ATEX1017 X]	
TRIVAC D 16 B-Ex IIC T4 ²⁾	
in accordance with 94/9/EC	Part No. 140 092 ²⁾
$\left[\left\langle \xi_{X}\right\rangle \right]$ II inside: 1G IIC (no $C_{2}H_{2}$, CS_{2}) T4	
outside: 2G IIC T4	
(12 $^{\circ}$ C < t_a < 40 $^{\circ}$ C) X	
EC Type Examination Certificate:	
IBExU03ATEX1016 X	

¹⁾ To DIN 28 400 and following numbers

 $^{^{2)}\,}$ with the exception of acetylene and carbon bisulphide

TRIVAC BCS, Two-Stage Rotary Vane Vacuum Pumps

TRIVAC SYSTEM

The TRIVAC BCS pumps are oil-sealed vacuum pumps operating according to the rotary vane principle. Oil which is injected into the pump chamber is used for sealing, lubrication and cooling purposes.

The pump body is assembled from individual parts without sealing components. The parts are pinned in order to ensure easy disassembly and reassembly of the parts.

The TRIVAC BCS are available with a three-phase motor (The North and South American TRIVAC D 16/25 BCS are also available with single-phase motors). The motor is connected to the pumping section via an elastic coupling.

In addition, the TRIVAC BCS is ready for system integration (adaptable to different applications).

Advantages to the User

- Compact design
- Low noise operation with hardly any vibrations
- Built-in oil pump
- Continuous operation even at 1000 mbar (750 Torr)
- Pressure-lubricated sliding bearings

- Anti-suckback valve controlled via the oil pressure, no backstreaming of oil, independent of the operating mode, with or without gas ballast
- Low backstreaming of oil within the pump
- High pumping speed down to ultimate pressure
- Either vertical or horizontal intake and exhaust ports
- All controls as well as the oil sight glass are located on the face side
- Low power consumption
- Produces very little heat
- Exchangeable inner section
- Main flow oil filters may be fitted
- Very long service life
- Modular system
- Service-friendly
- Built-in temperature switch for temperature monitoring
- Corrosion protected the use of yellow metals has been avoided; only grey cast iron, surface treated aluminium, steel and stainless steel is used
- Double shaft seal

Typical Applications

- In all areas of vacuum engineering
- Pumping of corrosive or aggressive
- Production of semiconductors and in the area of chemistry
- Research and production
- Generation of rough and medium
- Backing pump in pump sets, i.e. in connection with Roots, diffusion, turbo or cryopumps

Supplied Equipment

- Small flanges
- Centering, sealing and clamping rings
- The intake port includes a dirt trap

BCS pumps are supplied with a filling of mineral oil N 62, HE-200 oil or perfluoropolyether (PFPE) synthetic oil.

ALL PUMPS ARE SUBJECTED TO A VACUUM TEST BEFORE DELIVERY!

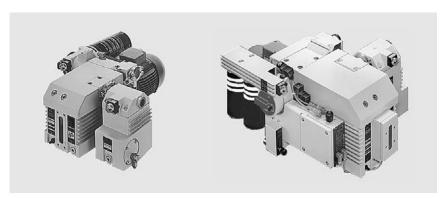
TRIVAC SYSTEM

The TRIVAC BCS and its accessories

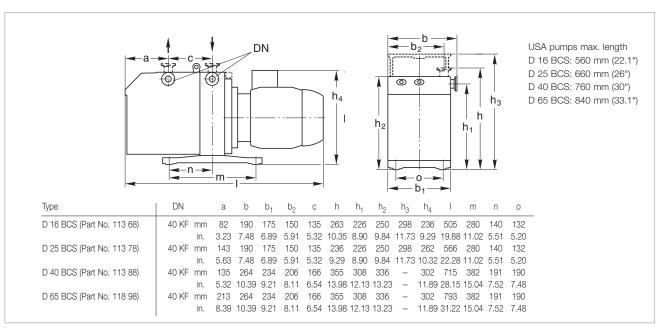
- CFS, chemical filter with safety isolation valve
- ARS, exhaust filter with lubricant return
- IGS, inert gas system
- LSS, limit switch system and
- EIS, electrical indicator system

make up the TRIVAC SYSTEM.

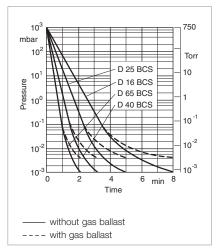
TRIVAC BCS-PFPE

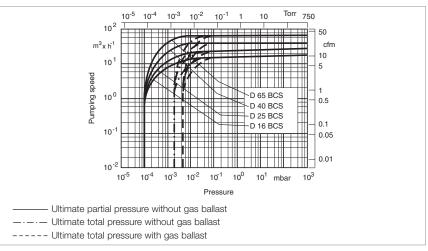

In many applications the use of synthetic lubricants like perfluoropolyether (PFPE) offers superior characteristics compared to mineral

Advantages of perfluoropolyether (PFPE) NC 1/14 and HE-1600:


- Practically inert against all chemical and oxidizing influences.
- No polymerization under the influence of high energy radiation.
- In part significantly increased oil change intervals.
- Thermally highly stable. Thermal decomposition will only occur at temperatures over 290 °C (554 °F).

BCS-PFPE pumps have been especially prepared for operation with PFPE and are supplied without the oil filling. We recommend using our operating fluid PFPE NC 1/14 or HE-1600 and always to install a chemical oil filter CF/CFS.


TRIVAC D 16 BCS to D 65 BCS


TRIVAC D 25 BCS with ARS and CFS (left) and TRIVAC D 65 BCS with CFS, ARS, IGS, LSS, EIS - TRIVAC SYSTEM (right)

Dimensional drawing for the TRIVAC D 16 to D 65 BCS

Pump-down characteristics of a 100 I vessel at 50 Hz

Pumping speed characteristics at 50 Hz (60 Hz curves at the end of the section)

Technical Data, 50 Hz

TRIVAC

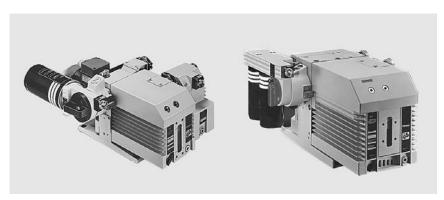
		D 16 BCS	D 25 BCS	D 40 BCS	D 65 BCS
		two-stage	two-stage	two-stage	two-stage
Nominal pumping speed 50/60 Hz ¹⁾	m ³ x h ⁻¹ (cfm)	18.9 (11.1) / 22.7 (13.4)	29.5 (17.4) / 35.4 (20.9)	46 (27) / 55 (32.5)	75 (44) / 90 (53)
Pumping speed 50/60 Hz ¹⁾	m ³ x h ⁻¹ (cfm)	16.5 (9.7) / 19.8 (11.7)	25.7 (15.1) / 30.8 (18.2)	40 (24) / 48 (28)	65 (38) / 78 (46)
Ultimate partial pressure without gas ballast 1)	mbar (Torr)	10 ⁻⁴ (0.75 x 10 ⁻⁴)	10 ⁻⁴ (0.75 x 10 ⁻⁴)	10 ⁻⁴ (0.75 x 10 ⁻⁴)	10 ⁻⁴ (0.75 x 10 ⁻⁴)
Ultimate total pressure without gas ballast 1)	mbar (Torr)	< 2.5 x 10 ⁻³ (< 1.9 x 10 ⁻³)	< 2.5 x 10 ⁻³ (< 1.9 x 10 ⁻³)	< 2 x 10 ⁻³) (< 1.5 x 10 ⁻³)	< 2 x 10 ⁻³ (< 1.5 x 10 ⁻³)
Ultimate total pressure with gas ballast ¹⁾	mbar (Torr)	< 5 x 10 ⁻³ (< 3.8 x 10 ⁻³)	< 5 x 10 ⁻³ (< 3.8 x 10 ⁻³)	< 5 x 10 ⁻³ (< 3.8 x 10 ⁻³)	< 5 x 10 ⁻³ (< 3.8 x 10 ⁻³)
Water vapor tolerance 1)	mbar (Torr)	25 (18.8)	25 (18.8)	40 (30)	40 (30)
Water vapor capacity	g/h	305	476	1184	1925
Oil filling, min. / max.	I (qt)	0.45 / 1.0 (0.5/1.1)	0.6 / 1.4 (0.6/1.5)	1.7 / 2.6 (1.8/2.7)	2.0 / 3.3 (2.1/3.5)
Noise level ²⁾ to DIN 45 635, without / with gas ballast	dB(A)	52 / 54	52 / 54	57 / 59	57 / 59
Admissible ambient temperatu	re °C (°F)	12 - 40 (54 - 104)	12 - 40 (54 - 104)	12 - 40 (54 - 104)	12 - 40 (54 - 104)
Motor rating ²⁾	W (HP)	550 (0.75)	750 (1)	2200 (3)	2200 (3)
Nominal speed 50/60 Hz	rpm	1500 / 1800	1500 / 1800	1500 / 1800	1500 / 1800
Type of protection ³⁾	IP	55	55	55	55
Weight ²⁾	kg (lbs)	26 (57.3)	32 (70.6)	68 (150)	80 (176.4)
Connections, Intake and Exhau	ust DN	25 KF	25 KF	40 KF	40 KF

¹⁾ To DIN 28 400 and following numbers

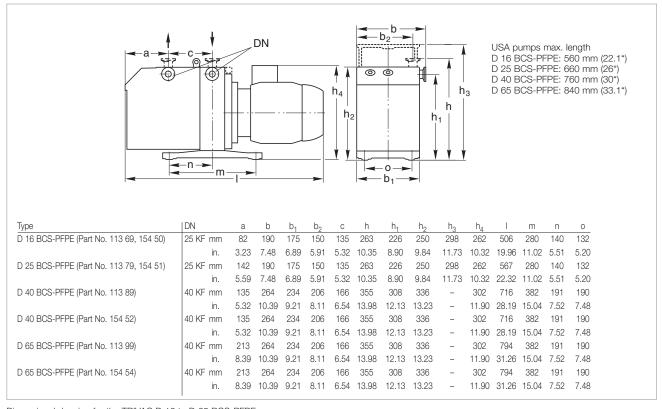
²⁾ Weight, motor rating and noise levels for the pumps with global version 3-phase motor, 50 Hz, only. Any data that deviate from the above for pumps with other motors, and other motor-dependent data are given in section "Products", paragraph "Motor Dependent Data for the TRIVAC B, BCS and BCS-PFPE"

³⁾ Global versions only. North and South American versions are TEFC

Ordering Information


TRIVAC

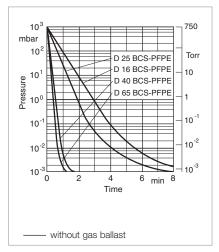
	D 16 BCS	D 25 BCS	D 40 BCS	D 65 BCS
	two-stage	two-stage	two-stage	two-stage
TRIVAC BCS				
with 3-phase motor				
230/400 V, 50 Hz / 250/440 V, 60 Hz	Part No. 113 68	Part No. 113 78	Part No. 113 88	Part No. 113 98
Accessories				
Roots pump adaptor	-	-	Part No. 168 30	Part No. 168 30
Exhaust filter with lubricant return				
ARS 16-25	Part No. 189 56	Part No. 189 56	_	_
ARS 40-65	-	-	Part No. 189 57	Part No. 189 57
Condensate separator				
AK 16-25	Part No. 188 11	Part No. 188 11	_	_
AK 40-65	-	-	Part No. 188 16	Part No. 188 16
Chemical filter with				
safety blocking valve				
CFS 16-25	Part No. 101 76	Part No. 101 76	-	-
CFS 40-65	-	-	Part No. 101 77	Part No. 101 77
Inert gas system				
IGS 16-25	Part No. 161 76	Part No. 161 76	-	-
IGS 40-65	-	-	Part No. 161 77	Part No. 161 77
Limit switch system				
LSS 16-25	Part No. 161 06	Part No. 161 06	-	-
LSS 40-65	-	_	Part No. 161 07	Part No. 161 07
Electrical indicator system				
EIS 16-25	Part No. 160 96	Part No. 160 96	_	-
EIS 40-65		-	Part No. 160 97	Part No. 160 97
Spare Parts				
Inside section	Part No. 200 39 762	Part No. 200 39 764	Part No. 200 39 758	Part No. 200 39 760
Seal kit	Part No. 197 31	Part No. 197 31	Part No. 197 32	Part No. 197 32


Only available for purchase in North and South America

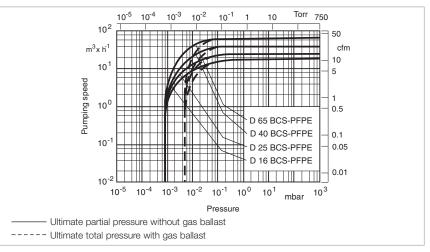
Ordering Information		TRI	VAC	C		
	D 16 BCS	D 25 BCS	D 40 BCS D	D 65 BCS		
	two-stage two-stage two-stage					
TRIVAC BCS with 3-phase motor						
208-230/460 V, 60 Hz / 200-220/380 V, 50 Hz	Part No. 913 68-2	Part No. 913 78-3	Part No. 913 88-2	Part No. 913 98-2		

TRIVAC D 16 BCS-PFPE to D 65 BCS-PFPE

TRIVAC D 25 BCS-PFPE with CFS 16-25 and ARS 16-25 (left) and TRIVAC D 65 BCS-PFPE with CFS 40-65 (right)


Dimensional drawing for the TRIVAC D 16 to D 65 BCS-PFPE

TRIVAC Technical Data


		D 16 BCS-PFPE	D 25 BCS-PFPE	D 40 BCS-PFPE	D 65 BCS-PFPE
		two-stage	two-stage	two-stage	two-stage
Nominal pumping speed 50/60 Hz ¹⁾	n ³ x h ⁻¹ (cfm)	18.9 (11.1) / 22.7 (13.4)	29.5 (17.4) / 35.4 (20.9)	46 (27) / 55 (32.5)	75 (44) / 90 (53)
Pumping speed 50/60 Hz ¹⁾ n	n ³ x h ⁻¹ (cfm)	16.5 (9.7) / 19.8 (11.7)	25.7 (15.1) / 30.8 (18.2)	40 (24) / 48 (28)	65 (38) / 78 (46)
Ultimate partial pressure without gas ballast 1)	mbar (Torr)	< 8 x 10 ⁻⁴ (< 6 x 10 ⁻⁴)	< 8 x 10 ⁻⁴ (< 6 x 10 ⁻⁴)	< 8 x 10 ⁻⁴ (< 6 x 10 ⁻⁴)	< 8 x 10 ⁻⁴ (< 6 x 10 ⁻⁴)
Ultimate total pressure with gas ballast ¹⁾	mbar (Torr)	< 5 x 10 ⁻³ (< 3.8 x 10 ⁻³)	< 5 x 10 ⁻³ (< 3.8 x 10 ⁻³)	< 5 x 10 ⁻³ (< 3.8 x 10 ⁻³)	< 5 x 10 ⁻³ (< 3.8 x 10 ⁻³)
Ultimate total pressure with red gas ballast, 200 l x h ⁻¹ 1)	uced mbar (Torr)	< 2 x 10 ⁻³ (< 1.5 x 10 ⁻³)	< 2 x 10 ⁻³ (< 1.5 x 10 ⁻³)	-	_
Lubricant filling min. / max. upon delivery	l (qt) l (qt)	0.45 / 1.0 (0.5 / 1.1) 0.2 (0.2)	0.6 / 1.4 (0.6 / 1.5) 0.4 (0.4)	1.5 / 2.5 (1.6 / 2.6) 0.6 (0.6)	2.0 / 3.5 (2.1 / 3.7) 0.75 (0.8)
Noise level ²⁾ to DIN 45 635, without / with gas ballast	dB(A)	52 / 54	52 / 54	57 / 59	57 / 59
Admissible ambient temperature	e °C (°F)	12 ³⁾ - 40 (54 - 104)	12 - 40 (54 - 104)	12 - 40 (54 - 104)	12 - 40 (54 - 104)
Motor rating ²⁾	W (HP)	550 (0.75)	750 (1)	2200 (3)	2200 (3)
Nominal speed 50/60 Hz	rpm	1500 / 1800	1500 / 1800	1500 / 1800	1500 / 1800
Type of protection ⁴⁾	IP	55	55	55	55
Weight ²⁾	kg (lbs)	27 (59.5)	33 (72.8)	71 (156.6)	83 (183)
Connections, Intake and Exhaus	st DN	25 KF	25 KF	40 KF	40 KF

¹⁾ To DIN 28 400 and following numbers

⁴⁾ Global versions only. North and South American versions are TEFC

Pumping speed characteristics at 50 Hz (60 Hz curves at the end of the section)

²⁾ Weight, motor rating and noise levels for the pumps with global version 3-phase motor, 50 Hz, only. Any data that deviate from the above for pumps with other motors, and other motor-dependent data are given in section "Products", paragraph "Motor Dependent Data for the TRIVAC B, BCS and BCS-PFPE"

³⁾ Cold start temperature to DIN

Ordering Information

TRIVAC D 16 BCS-PFPE D 25 BCS-PFPE D 40 BCS-PFPE D 65 BCS-PFPE

	two-stage	two-stage	two-stage	two-stage
TRIVAC BCS-PFPE				
with 3-phase motor				
230/400 V, 50 Hz / 250/440 V, 60 Hz	Part No. 113 69	Part No. 113 79	Part No. 113 89	Part No. 113 99
200/400 V, 50 Hz / 220/440 V, 60 Hz	Part No. 154 50	Part No. 154 51	Part No. 154 52	Part No. 154 54
Accessories				
Roots pump adaptor	-	-	Part No. 168 30	Part No. 168 30
Exhaust filter with lubricant return				
ARS 16-25	Part No. 189 56	Part No. 189 56	-	-
ARS 40-65	-	-	Part No. 189 57	Part No. 189 57
Condensate trap				
AK 16-25	Part No. 188 11	Part No. 188 11	-	-
AK 40-65	-	-	Part No. 188 16	Part No. 188 16
Chemical filter with				
safety isolation valve				
CFS 16-25	Part No. 101 76	Part No. 101 76	-	-
CFS 40-65	-	-	Part No. 101 77	Part No. 101 77
Inert gas system				
IGS 16-25	Part No. 161 76	Part No. 161 76	-	-
IGS 40-65	-	-	Part No. 161 77	Part No. 161 77
Limit switch system				
LSS 16-25	Part No. 161 06	Part No. 161 06	-	-
LSS 40-65	-	-	Part No. 161 07	Part No. 161 07
Electrical indicator system				
EIS 16-25	Part No. 160 96	Part No. 160 96	-	-
EIS 40-65	-	-	Part No. 160 97	Part No. 160 97
Spare Parts				
Inside section	Part No. 200 39 763	Part No. 200 39 765	-	Part No. 200 39 156
Seal kit	Part No. 197 41	Part No. 197 41	Part No. 197 42	Part No. 197 42

Ordering Information

TRIVAC

D 16 BCS-PFPE D 25 BCS-PFPE D 40 BCS-PFPE D 65 BCS-PFPE

	two-stage	two-stage	two-stage	two-stage
TRIVAC BCS-PFPE				
with 1-phase motor				
115 V, 60/50 Hz, NEMA plug	Part No. 913 69-1	_	_	_
200-230 V, 60 Hz, NEMA plug	_	Part No. 913 79-2	_	_
with 3-phase motor				
208-230/460 V, 60 Hz /				
200-220/380 V, 50 Hz	Part No. 913 69-2	Part No. 913 79-3	Part No. 913 89-2	Part No. 913 99-2

Motor Dependent Data for the TRIVAC B, BCS and BCS-PFPE

Ordering Information

D4B

D8B

	&
	×
TRIVAC DA	
,AC	
CRIV.	

Part No. 140 081	Part No. 140 082
Part No. 112 45	Part No. 112 55
Part No. 112 46	Part No. 112 56
Part No. 140 140	Part No. 140 150
Part No. 912 45-1	-
Part No. 912 45-2	-
Part No. 912 46-2	-
-	Part No. 912 55-1
-	Part No. 912 55-2
-	Part No. 912 56-2

D 16 B **D 16 BCS** D 16 BCS-PFPE

D 25 B **D 25 BCS** D 25 BCS-PFPE

2 10 200 1112	
-	Part No. 113 48
-	-
-	-
Part No. 113 25	Part No. 113 35
-	-
-	-
Part No. 112 65	-
-	-
-	-

	D 4/8 B	D 16/25	D 40	D 65 B	S 1,5
Shaft dimensions ø d/l	14 / 30	19 / 40	24 / 50	28 / 60	11 / 23
Size of flange A/B	140 / 95	160 / 110	160 / 110	160 / 110	120 / 100

Type of protection	IP 54
Type of motor	B 14
Rotational speed 50/60 Hz	1500 / 1800

Ref. No. 1- or 3-ph	Motor voltage (V)	Frequency (Hz) ± 5%	Voltage range (V)	Power ((kW) (HP))	Nominal current (A)	Size	Region
100 002 292	100-120	50/60	100-120	0.57	7.7/5.6	80	World
1 ~	200-240	50/60	200-240	0.66	4.0/2.8		
380 66 008 1 ~	230	50	218-242	0.37 0.5	2.9	70	Euro
380 66 006	230/400	50	218-242/380-420	0.37 0.5	1.95/1.12	70	Euro
3 ~	250/440	60	240-277/415-480		1.73/1.0		(USA)
200 10 406 3 ~ Exe II CT3	230/400	50	219-242/380-420	0.37	1.84/1.06	71L	Euro (USA)
							, ,
722 60 095 1 ~	115 110	60 50	103-126 99-121	0.25 0.33	7.0 8.8	NEMA 56 C	USA
722 60 096	200-230	60	180-253	0.25 0.33	3.2-3.5	NEMA 56 C	USA
1 ~	200-220	50	180-220		3.6-4.4		
722 60 067	200-230/460	60	180-253/414-506	0.25 0.33	1.5-1.6/0.8	NEMA 56 C	USA
3 ~	200/380	50	180-220/342-418		1.6/0.8		
722 60 117	115	60	103-126	0.55 0.75	9.4	NEMA 56 C	USA
1 ~	115	50	103-126		13.0		
722 60 005	208-230	60	187-253	0.55 0.75	4.8-4.7	NEMA 56 C	USA
1 ~	208-230	50	187-253		5.5-6.5		
722 60 135	208-230/460	60	187-253/414-506	0.75 1.0	3.4/1.7	NEMA 56 C	USA
3 ~	208-220/380	50	187-242/342-418		3.1/1.7		

Ref. No. 1- or 3-ph	Motor voltage (V)	Frequency (Hz) ± 5%	Voltage range (V)	Power ((kW) (HP))	Nominal current (A)	Size	Region
200 10 679 1 ~	115	60	109-121	0.75 1.0	12.5	90	USA
110 001 212	230	50 60	208-252	0.75 1.0	5.7 4.9	90	Wide range
380 66 003	230	50	218-242	0.55 0.75	5.0	80	Euro

The right of technical alterations is reserved

Motor Dependent Data for the TRIVAC B, BCS and BCS-PFPE

Ord	lerina	Inform	ation
OI U	ici ii ig		ativii

D 16 BCS D 16 BCS-PFPE

D 25 BCS D 25 BCS-PFPE

TRIVAC DAG * 25 B

D 16 BCS-PFPE	D 25 BCS-PFPE		
_	Part No. 112 75		
_	=		
-	-		
Part No. 112 66 / 113 33 (RCF - E68N)	Part No. 112 76		
Part No. 113 68			
	Part No. 113 78		
Part No. 113 69	Part No. 113 79		
Part No. 140 160	Part No. 140 170		
-	-		
-	-		
Part No. 113 34 (RCF - E68N)	-		
_	-		
_	-		
Part No. 114 06 DOT / 114 10 DOT LSS	-		
_	-		
_	-		
-	-		
Part No. 154 50	- Part No. 154 51		
	Fait No. 134 31		
Part No. 912 65-1	-		
	-		
Part No. 913 69-1	<u>-</u>		
Part No. 912 65-2	-		
-	-		
-	-		
Part No. 912 66-2	-		
Part No. 913 68-2	-		
Part No. 913 69-2	-		
_	Part No. 912 75-2		
_	-		
-	Part No. 913 79-2		
_	Part No. 912 76-2		
_	Part No. 912 76-2		
_	Part No. 913 79-3		
_	Part No. 912 75 V 001		
	Part No. 912 /5 V 001		
_	- -		

	D 4/8 B	D 16/25	D 40	D 65 B	S 1,5
Shaft dimensions ø d/l	14 / 30	19 / 40	24 / 50	28 / 60	11 / 23
Size of flange A/B	140 / 95	160 / 110	160 / 110	160 / 110	120 / 100

Type of protection	IP 54
Type of motor	B 14
Rotational speed 50/60 Hz	1500 / 1800

Ref. No. 1- or 3-ph	Motor voltage (V)	Frequency (Hz) ± 5%	Voltage range (V)	Power ((kW) (HP))	Nominal current (A)	Size	Region
110 001 200	230	50 60	218-242	0.55 0.75	5.0 4.2	80	Euro
380 66 002 3 ~	230/400 250/440	50 60	218-242/380-420 240-277/415-480	0.75 1.0	3.8/2.05 4.3/2.5	80	Euro (USA)
380 66 001 3 ~	230/400 250/440	50 60	212-242/380-420 240-277/415-480	0.55 1.0	2.85/1.65 2.5/1.45	70	Euro (USA)
380 66 002 3 ~	230/400 250/440	50 60	218-242/380-420 240-277/415-480	0.75 1.0	3.8/2.05 4.3/2.5	80	Euro (USA)
380 66 002 3 ~	230/400 250/440	50 60	218-242/380-420 240-277/415-480	0.75 1.0	3.8/2.05 4.3/2.5	80	Euro (USA)
200 10 409 3 ~ Exe II CT3	230/400	50	218-242/380-420	0.75 1.0	3.4/1.97	80	Euro
200 10 410 3 ~	200/346 208/360	50 60	190-210/330-365 190-230/330-400	0.75 1.0	4.3/2.5 4.3/2.5	80	Japan, South and Central America USA
200 10 299 3 ~	230/400 250/440	50 60	218-242/380-420 240-265/415-460	0.55 0.75	3.2/1.85 2.8/1.6	70	Euro
100 000 807 3 ~	200/400 220/440	50 60	190-220/380-440 190-240/380-480	0.75 1.0	4.3/2.15 4.0/2.0	80	Wide range
722 60 117 1 ~	115 115	60 50	103-126 103-126	0.55 0.75	9.4 13.0	NEMA 56 C	USA
722 60 005 1 ~	208-230 208-230	60 50	187-253 187-253	0.55 0.75	4.8-4.7 5.5-6.5	NEMA 56 C	USA
722 60 135 3 ~	208-230/460 208-220/380	60 50	187-253/414-506 187-242/342-418	0.75 1.0	3.4-3.4/1.7 3.1/1.7	NEMA 56 C	USA
722 60 022 1 ~	200-230	60	180-253	1.1 1.5	9.6-9.2	NEMA 56 C	USA
722 60 071 3 ~	200-230/460 200/380	60 50	180-253/414-506 180-220/342-418	1.1 1.5	9.0-8.0 9.6-9.2	NEMA 56 C	USA
722 60 186 1 ~	115	60	103-126	1.1 1.5	18.0	NEMA 56 C	USA

The right of technical alterations is reserved

Motor Dependent Data for the TRIVAC B, BCS and BCS-PFPE

Ordering Information	D 40 B	D 65 B
	D 40 BCS	D 65 BCS
	D 40 BCS-PFPE	D 65 BCS-PFPE
	Part No. 112 86	Part No. 112 96
	Part No. 113 88	Part No. 113 98
	Part No. 113 89	Part No. 113 99
	Part No. 140 180	Part No. 140 190
	_	_
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-	_
TRIVAC 65 B DAO * 65 B DESI-PEPEN	Part No. 113 47	Part No. 113 57
All X OFF.	_	_
"O SK.	-	-
o" sk"		
4 203	-	-
	_	_
	Part No. 154 52	Part No. 154 54
	Part No. 912 86-2	Part No. 912 96-2
	Part No. 912 88-2	Part No. 912 98-2
	Part No. 912 89-2	Part No. 912 99-2

	D 4/8 B	D 16/25	D 40	D 65 B	S 1,5
Shaft dimensions ø d/l	14 / 30	19 / 40	24 / 50	28 / 60	11 / 23
Size of flange A/B	140 / 95	160 / 110	160 / 110	160 / 110	120 / 100

Type of protection	IP 54
Type of motor	B 14
Rotational speed 50/60 Hz	1500 / 1800

Ref. No. 1- or 3-ph	Motor voltage (V)	Frequency (Hz) ± 5%	Voltage range (V)	Po ((kW)	wer (HP))	Nominal current (A)	Size	Region
380 66 012	230/400	50	218-242/380-420	2.2	3.0	9.9/5.7	100	Euro
3 ~	250/440	60	240-277/414-480			8.5/4.9		(USA)
200 10 411	230/400	50	218-242/380-420	2.5	3.4	9.4/5.4	100	Euro
3 ~ Exe II CT3								
200 10 412	200/346	50	190-210/330-365	2.2	3.0	10.1/5.85	90	Japan,
3 ~	208/360	60	190-230/330-400			10.1/5.85		South and Central America,
200 15 402	200/400	50	190-220/380-440	2.2	3.0	15.0/7.5	100	Wide
3 ~	220/440	60	190-240/380-480	2.2	0.0	11.5/5.9	100	range
722 60 011	200-230/460	60	180-253/414-506	2.2	3.0	9.0-8.4/4.2	NEMA 182 TC	USA
3 ~	200-220/380-415	50	180-242/342-418			9.4-9.6/4.6-4.7		

The right of technical alterations is reserved

Accessories

Accessories for TRIVAC E

Exhaust Filter Drain Tap

The exhaust filter drain tap simplifies draining of the oil from the exhaust filter.

SW 6 0.33 0.20 0.90 0.79 1.61 1.02 0.39

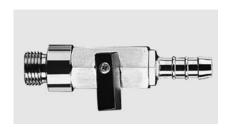
Dimensional drawing for the exhaust filter drain tap

Technical Note

May also be used in connection with the condensate separator AK.

Technical Data

Exhaust Filter Drain Tap

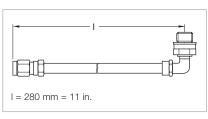

≤ 10⁻⁵ mbar x I x s⁻¹ Leak rate

Ordering Information

Exhaust Filter Drain Tap

Part No. 190 95 Exhaust filter drain tap

Oil Drain Tap



This oil drain tap may be screwed into the oil drain when wanting to change the oil in the rotary vane pumps. It is also suited for the condensate separators and exhaust filters of the TRIVAC B series.

SW 19 øa Hose nozzle 10.5 22 11 0.41 2.99 0.87 0.43

Dimensional drawing for the oil drain tap

Oil Drain Kit

Dimensional drawing for the oil drain kit

Technical Data	Oil Drain Tap	ı

mbar x I x s⁻¹ ≤ 10⁻⁵ Leak rate

Ordering Information Oil Drain Tap

Part No. 190 90 Oil drain tap

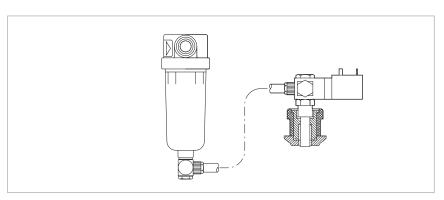
Technical Data

Oil Drain Kit

Length	mm (in.)	280 (11)
Leak rate	mbar x I x s ⁻¹	≤ 10 ⁻⁵

Ordering Information

Oil Drain Kit


Oil drain kit	Part No. 190 94

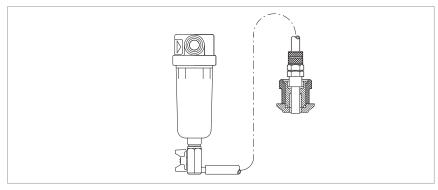
Oil Suction Facility AR-V Controlled by Solenoid Valve

Suited for the AF 8 or AK 8 when connected to the D 2.5 E, the oil suction facility AR-V with its solenoid valve allows the removal of oil via the gas ballast which has collected in the exhaust filter. When the valve is closed the gas ballast remains fully operational. For this, a hose link is provided between the exhaust filter and the gas ballast.

Technical Note

If oil which has collected in the exhaust filter is to be removed, the solenoid valve is opened briefly.

AR-V oil suction facility controlled by solenoid valve (kit without exhaust filter)


Technical Data		AR-V Oil Suction Facility Controlled by Solenoid Valve
Leak rate	mbar x I x s ⁻¹	≤ 10 ⁻⁵
Ordering Information		AR-V Oil Suction Facility Controlled by Solenoid Valve
AR-V oil suction facility controll solenoid valve 24 V DC. 4 W. n	•	Part No. 190 92

Manually Operated Oil Suction Facility AR-M

Suited for the AF 8 or AK 8 when connected to the D 2,5 E, the oil suction facility AR-M allows the removal of oil via the gas ballast which has collected in the exhaust filter, whereby the gas ballast remains fully operational as long as the angled ball valve remains closed. For this, a hose link is provided between the exhaust filter and the gas ballast.

Technical Note

If oil which has collected in the exhaust filter is to be removed, the angled ball valve is manually opened briefly.

AR-M manually operated oil suction facility (kit without exhaust filter)

Technical Data		AR-M Manually Operated Oil Suction Facility
Leak rate	mbar x I x s ⁻¹	≤ 10 ⁻⁵
Ordering Information		AR-M Manually Operated Oil Suction Facility
AR-M manually oper	rated oil suction facility	Part No. 190 93

Accessories for TRIVAC E and B

Exhaust Filters AF 8, AF 10, AF 25 Condensate Traps AK 8, AK 10, AK 25

Exhaust filter (left) and condensate trap (right)

Exhaust-Filter

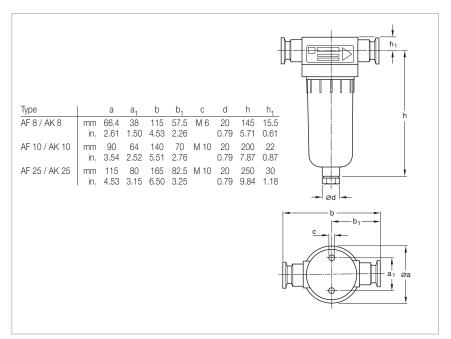
Oil mists and aerosols are retained in the exhaust filter.

Advantages to the User

- Filtering of the exhaust gas by removal of entrained lubricant particles
- Emptying via drain screw or exhaust filter drain tap
- Separation efficiency > 99 %
- Filter elements (made of glass fiber) are exchangeable

Condensate Trap

Condensate traps prevent the formation of condensate in the pump as well as the backstreaming of fluids.


Advantages to the User

- Can be connected to either the intake or the exhaust side
- Protects against condensate forming from sucked in vapors or gases (intake line)
- Protects against backstreaming liquids (exhaust line)
- Emptying via drain screw/drain tap

Technical Information

The exhaust filter is not capable of retaining toxic and/or aggressive gases. For such applications we recommend the use of an exhaust gas line (e.g. a gas washer).

Since the material is not resistant to all gases and solvents, a materials compatibility chart is available upon request.

Dimensional drawing for the exhaust filters and condensate trap

Technical Data		AF 8	AK 8	AF 10	AK 10	AF 25	AK 25
Connection to pump T (necessary accessories: elbow)	RIVAC	D 2,5 E; D 4 B D 8 B	D 2,5 E; D 4 B D 8 B	D 10 E	D 10 E	D 16 B D 25 B	D 16 B D 25 B
Connection flanges	DN	16 KF	16 KF	25 KF	25 KF	25 KF	25 KF
Max. filling level (for vertical installation)	ml (qt)	60	60	145	145	285	285
Permissible leak rate mbar x	I x s ⁻¹	≤ 1 x 10 ⁻⁵	≤ 1 x 10 ⁻⁵	≤ 1 x 10 ⁻⁵	≤ 1 x 10 ⁻⁵	≤ 1 x 10 ⁻⁵	≤ 1 x 10 ⁻⁵
Max. continuous temperature	°C (°F)	90	90	90	90	90	90
Material		PA 6	PA 6	PA 6	PA 6	PA 6	PA 6
Ordering Information		AF 8	AK 8	AF 10	AK 10	AF 25	AK 25
Exhaust filter		Part No. 190 50	_	Part No. 190 51	-	Part No. 190 53	-
Exhaust filter drain tap		Part No. 190 95	Part No. 190 95	Part No. 190 95	Part No. 190 95	Part No. 190 95	Part No. 190 95
Condensate trap		-	Part No. 190 60	-	Part No. 190 61	_	Part No. 190 63

Dust Separators AS 8-16 and AS 30-60 / Molecular Filters MF 8-16 and MF 30-60

AS 30-60 dust separator (MF 30-60 molecular filter is similar)

Dust separators protect pumps against contamination and damage by sucked-in dust.

Advantages to the User

- Dust separators for large quantities of dust
- Two-stage, thus hardly any throttling
- Cyclone (for coarse dust) and wet filter (for fine dust)
- Dust separator and molecular filter have the same housing (for easy conversion)

Typical Application

- Separation of coarse and medium size dust starting at a grain size of 2 µm.

Technical Information

Installing a dust filter in the intake line of the pump will throttle its pumping speed at low intake pressures more than at higher intake pressures. This must be taken into account when designing a vacuum system.

Even when large quantities of dust are deposited, the throttling effect will hardly increase.

Supplied Equipment

Blanked off drain port.

Molecular filters are used to separate vapors of a high molecular weight (i.e. monomers, vapors from resins).

Advantages to the User

- Molecular filter and dust separator have the same housing (for easy conversion)
- Separation of high-molecular weight vapors
- Protection of the pump's oil against damaging vapors

Technical Information

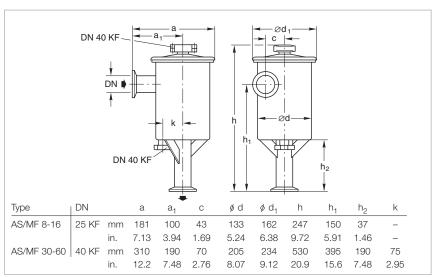
Installing a molecular filter in the intake line of the pump will throttle its pumping speed at low intake pressures more than at higher intake pressures. This must be taken into account when designing a vacuum system.

Supplied Equipment

Blanked off drain port.

Technical Data AS 8-16 AS 30-60 MF 8-16 MF 30-60

Connection to pump	TRIVAC	D 16 B	D 25 B	D 40 B	D 65 B	D 16 B/BCS	D 25 B/BCS	D 40 B/BCS	D 65 B/BCS
Throttling of the pumping speed									
at 1 mbar (0.75 Torr) intake pressure, approx.	%	10	15	8	16	10	15	8	16
at 10 mbar (7.5 Torr) intake pressure, approx.	%	5	7	4	9	5	7	4	9
Capacity for dust	l (qt)	0.6 (0.6)	0.6 (0.6)	2.0 (2.1)	2.0 (2.1)	_	_	_	_
Capacity for resin vapors or similar	kg (lbs)	_	_	_	_	0.15 (0.3)	0.15 (0.3)	0.35 (0.8)	0.35 (0.8)
Impact ring filling	l (qt)	0.5 (0.5)	0.5 (0.5)	3.5 (3.7)	3.5 (3.7)	_	_	_	_
Active charcoal filling	kg (lbs)	_			_	0.6 (1.3)	0.6 (1.3)	1.4 (3.1)	1.4 (3.1)
Weight	kg (lbs)	4.5 (9.9)	4.5 (9.9)	18.4 (40.6)	18.4 (40.6)	4.5 (9.9)	4.5 (9.9)	18.4 (40.6)	18.4 (40.6)


Ordering Information

AS 8-16 AS 30-60

MF 8-16

MF 30-60

Dust separator	Part No. 186 11	Part No. 186 16	-	-
Molecular filter	-	-	Part No. 186 12	Part No. 186 17
Replacement filter insert	-	Part No. 178 43	-	-
Replacement active charcoal insert	_	_	Part No. 178 07	Part No. 178 08
Active charcoal, undried, 5 kg (11 lbs)	_	_	Part No. 178 10	Part No. 178 10

Dimensional drawing for the AS dust separators and MF molecular filters

Fine Vacuum Adsorption Traps FA 2-4, FA 8-16, FA 30-60

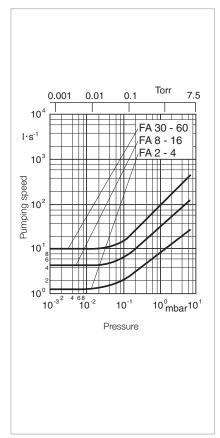
Heating rod and fine vacuum adsorption trap

Fine vacuum adsorption traps are vacuum-tight vessels which offer a high adsorption capacity especially for water vapor.

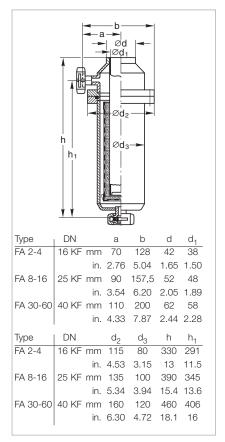
Advantages to the User

- Total pressures of 1.5 x 10⁻⁵ mbar (1.125 x 10⁻⁵ Torr) can be attained with a two-stage rotary vane vacuum pump
- Zeolite filling can be easily regenerated (baked at 300 °C (572 °F))
- High conductance

Typical Application


- Producing a vacuum which is free of water vapor

Technical Information


Liquid nitrogen in the adsorption trap will increase its adsorption capacity.

The conductance of the adsorption trap is higher than the pumping speed of the corresponding pump. See figure where the average pressure ahead and after the fine vacuum adsorption trap is plotted on the horizontal axis.

The adsorption traps may be installed in the intake line.

Conductances of fine vacuum adsorption traps as a function of the intake pressure of the TRIVAC

Dimensional drawing for the FA fine vacuum adsorption trap

Technical Data

FA 2-4	FA 8-16	FA 30-60

Connection to pump	TRIVAC	D 2,5 E D 4/8 B	D 16/25 B/BCS	D 40/65 B/BCS
Zeolite filling, approx.	kg (lbs)	0.3 (0.7)	0.7 (1.5)	1.25 (2.8)
Conductance below 10 ⁻² mbar (0.075 Torr)	I x s ⁻¹	1	4	9
Power rating of the heating rod at a main voltage of 220 V	w	200	200	300

Ordering Information

FA 2-4 FA 8-16 **FA 30-60**

Fine vacuum adsorption trap filled with zeolite, without heating rod	Part No. 187 05	Part No. 187 10	Part No. 187 15
Heating rod for adsorption trap	Part No. 854 21	Part No. 854 21	Part No. 854 23
Molecular sieve zeolite 13 X, 1 kg (2.2 lbs)	Part No. 854 20	Part No. 854 20	Part No. 854 20

Dust Filters FS 2-4, FS 8-16, FS 30-60

Dust filter

The dust filters protect the pumps against the intake of dust.

Advantages to the User

- Easy to disassemble
- Vacuum-tight cast iron casing
- Replacement filters may be easily exchanged
- Separates dusts from a grain size of 1 µm

FS 2-4, FS 8-16 FS 30-60 Type DN h, approx. h₁, approx. FS 2-4 16 KF mm 90 112 30 105 165 3.54 6.50 4 41 1 18 4 13 in FS 8-16 25 KF mm 110 150 50 125 205 4.92 8.07 4.33 5.91 1.97 in. FS 30-60 40 KF 130 225 250 mm 190 60 in. 5.12 7.48 6.69 2.36 8.86 9.84

Dimensional drawing for the FS dust filters

Technical Information

Installing a dust filter in the intake line of the pump will throttle its pumping speed at low intake pressures more than at higher intake pressures. This must be taken into account when designing a vacuum system.

Since the dust filters have only a small dust collecting chamber, we recommend - in the case of larger dust quantities - the two-stage dust separators from the AS range.

The dust filters should be installed in a horizontal flow so that the filter insert may be removed by pulling it down and out.

Technical Data

FS 2-4 FS 30-60 FS 8-16

Connection to pump	TRIVAC	D 2,5 E					
		D 4 B	D8B	D 16 B	D 25 B	D 40 B	D 65 B
Throttling of the pumping speed	I						
at 1 mbar (0.75 Torr), approx.	%	6	10	12	18	12	25
at 10 mbar (7.5 Torr), approx.	%	4	7	6	9	3	8
Weight	kg (lbs)	1.0 (2.2)	1.0 (2.2)	1.6(3.5)	1.6 (3.5)	7.5816.5)	7.516.5)

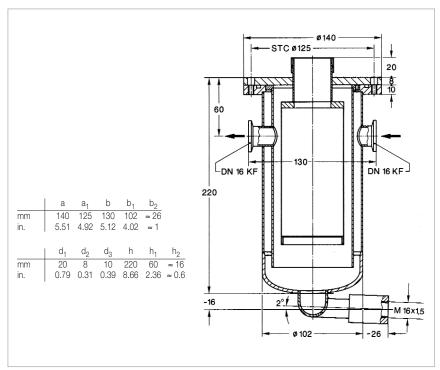
Ordering Information

FS 8-16 FS 30-60

Dust filter	Part No. 186 05	Part No. 186 10	Part No. 186 15
Replacement filter insert	Part No. 178 32	Part No. 178 33	Part No. 178 35
Replacement wadding cartridges (1 set = 10 pieces)	Part No. 200 39 050	Part No. 200 39 051	Part No. 971 78 251

Cold Trap TK 4-8

TK 4-8 cold trap


The cold trap protects the pump against damaging vapors.

Advantages to the User

- Rugged and implosion resistant
- May be fitted directly on the flange of the pump
- Safe draining of the condensate without problems
- Casing made of corrosion resistant stainless steel
- Simple filling with refrigerant (liquid nitrogen (LN₂) or a mixture of acetone and carbon di-oxide ice)

Typical Applications

- Prevention of oil from backstreaming into the vacuum system when operating at ultimate pressure
- Freezing of gases and vapors in the laboratory

Dimensional drawing for the TK 4-8 cold trap

TK 4-8 Technical Data

Connection to pump	TRIVAC	D 2,5 E
		D 4/8 B
Capacity for refrigerant, approx.	I (qt)	0.4 (0.4)
Connections	DN	16 KF
Weight	kg (lbs)	4 (8.8)

Ordering Information

TK 4-8	IN 4-0
--------	--------

Cold trap	Part No. 188 20
Drain tap for the intake side, vacuum-tight	Part No. 190 90
Elbow (1x)	Part No. 184 36
Centering ring	
aluminum/NBR (2x)	Part No. 183 26
stainless steel/FPM (2x)	Part No. 883 46
Clamping ring (2x)	Part No. 183 41

RST Refillable Traps

RST refillable trap

The RST traps are made from 304 stainless steel, and when specified with stainless steel filtration media, are fully suited for corrosive applications. The media is inserted directly into the trap. This ensures direct contact with the trap walls. There is no oil path between the trap wall and the retainer gasket to reduce trap effectiveness.

Advantages to the User

- Refillable
- Two filtration media
- Easy to clean
- Easy to recharge
- KF flanges

Applications

Foreline traps are utilized whenever long-term effects of mechanical pump oil back migration into the pumped chamber or higher vacuum (oil diffusion) pump may be undesirable. Copper wool for standard applications and stainless steel wool for corrosive applications are available.

	B	C				¬
Model	Flange	Dimension	φA	øΒ	С	D
RST16KF	DN 16 KF both ends	mm	KF 16	63	83	133
		in.		$2^{1}/_{2}$	3 ¹ / ₄	5 ¹ / ₄
	DN 25 KF both ends	mm	KF 25	76	108	171
RST25KF	1	in.		3	41/4	6 ³ / ₄
RST25KF						
RST25KF RST40KF	DN 40 KF both ends	mm	KF 40	102	102	178 7

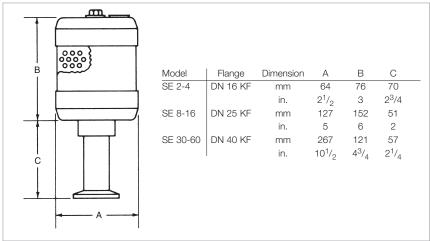
Dimensional drawing for the RST

lechnical Data		RSTIONE	NO 1 20NF	NO 14UNF
Connection to pump	TRIVAC	D 4/8 B/BCS	D 16/25 B/BCS	D 40/65 B/BCS

	I .	1	
Ordering Information	RST16KF	RST25KF	RST40KF
RST16KF	Part No.		
1.9 lb (0.9 kg)	99 171 135	-	-
RST25KF	_	Part No.	_
2.6 lb (1.2 kg)		99 171 136	
RST40KF	_	_	Part No.
4.1 lb (1.9 kg)			99 171 137
Filtering media			
Stainless steel	Part No.	Part No.	Part No.
	99 171 141	99 171 141	99 171 141
RF copper	Part No.	Part No.	Part No.
	99 171 145	99 171 146	99 171 147
BUNA-N gasket	Part No.	Part No.	Part No.
	725 80 005	725 80 006	725 80 007

SE Smoke Eliminator

SE smoke eliminator


The Oerlikon Leybold Vacuum SE smoke eliminator can be utilized on all TRIVAC B rotary vane pumps where pump fluid loss at the exhaust port must be eliminated. These filters consist of a replaceable two-stage coalescing element mounted in a steel housing. For maintenance purposes, the top of the housing can be removed by loosening a single bolt. The filter assembly attaches to the exhaust port of the TRIVAC pump by means of a KF flange. Since three models are available, an SE smoke eliminator is available for each TRIVAC pump model.

Advantages to the User

- Two stage design
- Three sizes for all TRIVAC B models
- KF flanges

Applications

When any oil sealed mechanical vacuum pump is used to pump a fixed volume from atmospheric pressure to some lower pressure or when a dynamic gas flow from a process stream is pumped, some mechanical pump fluid loss will occur at the exhaust of the pump. The more often a fixed volume is cycled from atmospheric pressure to a lower pressure or the longer a pump operates at a relatively high inlet pressure in a dynamic flow condition, the greater will be the

Dimensional drawing for the SE

Technical Data		SE 2-4	SE 8-16	SE 30-60
Connection to pump	TRIVAC	D 4/8 B	D 16/25 B	D 40/65 B

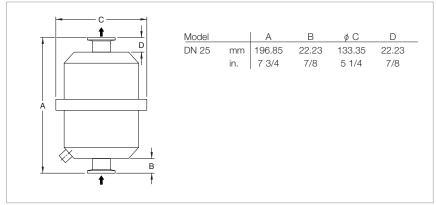
Ordering Information	SE 2-4	SE 8-16	SE 30-60

Smoke eliminator	Part No. 99 171 125	Part No. 99 171 126	Part No. 99 171 127
Replacement element			
RE 2-4	Part No. 99 171 128	_	-
RE 8-16	-	Part No. 99 171 129	-
RE 30-60	_	_	Part No.
			99 171 130

fluid loss at the exhaust port of the pump.

By utilizing a coalescing exhaust filter for these applications, the fluid and exhaust gases are separated, and in the case of the SE smoke eliminator, the coalesced fluid is allowed to drain back into the pump fluid reservoir. Annoying oil fog to the atmosphere is thus eliminated.

Eventually, after about a year's normal operation, the coalescing element will become totally saturated and oil fog will be apparent when high inlet pressures


are prevailing. The low cost coalescing element can be easily replaced.

Note: For applications where toxic, corrosive, radioactive or precious gases are pumped, we highly recommend the use of our AF coalescing exhaust filters instead of the SE smoke eliminator. The AF is an in-line type coalescing filter and much more suitable for these applications.

Compact Oil Mist Exhaust Filters

Compact oil mist exhaust filter

Dimensional drawing for the compact oil mist exhaust filter

Applications and Equipment

- Rotary vane pumps
- Vacuum furnaces, ovens and degassing
- Refrigeration and air condition
- Vacuum freeze drying
- Vacuum metallizing
- Vacuum coating
- Laboratory furnaces, test stands
- Autoclaving, sterilization
- Leak detection

Features and Specifications

- Minimum 99.97 % D.O.P. on 3 micron particles
- Captures oil fog, mist or smoke from exhaust of oil lubricated vacuum pumps
- Compact, low profile design
- Stainless steel housing and internals
- Pleated filter element provides increased surface area for low back pressure
- Back pressure valve designed to release element at 7.35 PSI (0.5 bar) differential for pump safety
- 1/8" NPT oil drain
- Easy release V-band clamp
- Seamless drawn housings no welds to rust or vibrate apart
- Easy field maintenance
- Operating temperature: 40 °F (4 °C) to 220 °F (104 °C)

Technical Data

Compact Oil Mist Exhaust Filter

Connection to pump	TRIVAC	D16/25B
ISO inlet and outlet		DN 25
Nominal vacuum pump rating	scfm (m ³ /hr)	20 (34)
Element rating	scfm (m ³ /hr)	20 (34)
Weight, approx.	kg (lbs)	1 (2.2)

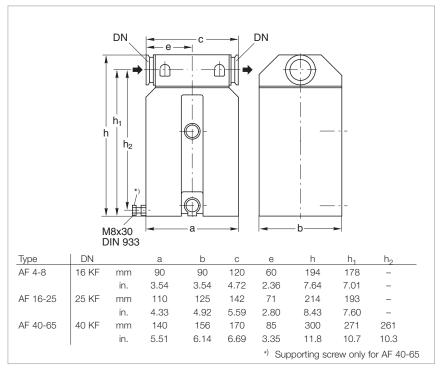
Ordering Information

Compact Oil Mist Exhaust Filter

Compact oil mist exhaust filter	Part No. 721-87-113
Replacement filter insert filter	Part No. 721-87-099

Accessories for TRIVAC B

Exhaust Filters AF 4-8, AF 16-25, AF 40-65



AF 4-8 exhaust filter

Exhaust filters retain oil mists and aerosols.

Advantages to the User

- Can be fitted without additional accessories
- Separation efficiency over 99 %
- Exchangeable filter inserts
- Built-in over-pressure relief valve (threshold at about 1.5 bar (7.2 psi, differential))
- Sight glass for checking of the quantity of collected oil
- Resistant against solvents
- All seals made of FPM
- Easy to clean and use
- Retains dirt and cracked products

Dimensional drawing for the AF exhaust filter

Typical Application

- Improvement of oil separating capacity

Technical Information

An exhaust line must be connected in case of hazardous exhaust gases.

Technical Data	AF 4-8	AF 16-25	AF 40-65
Connection to pump TRIVAC	D 4/8 B	D 16/25 B/BCS	D 40/65 B/BCS
Max. capacity for condensate, approx. I (qt)	0.4 (0.4)	0.5 (0.5)	1.0 (1.0)
Weight kg (lbs)	1.9 (4.1)	3.2 (7.1)	6.5 (14.3)
Ordering Information	AF 4-8	AF 16-25	AF 40-65
Exhaust filter	Part No. 189 06	Part No. 189 11	Part No. 189 16
Replacement filter element			
FE 4-8	Part No. 189 71	-	-
FE 16-25	-	Part No. 189 72	-
FE 40-65	-	-	Part No. 189 73
Oil drain tap M 16 x 1.5 (vacuum-tight)	Part No. 190 90	Part No. 190 90	Part No. 190 90
Technical Data		AF 16-25 DOT	
Connection to pump TRIVAC	_	D 16 B-DOT	_
Ordering Information		AF 16-25 DOT	
Exhaust filter	-	Part No. 124 16	-
Replacement filter element			
FE 16-25 DOT	_	Part No. 200 10 304	_

Exhaust Filters with Lubricant Return ARP 4-8, AR 4-8, AR 16-25, AR 40-65

AR 4-8 exhaust filter with lubricant return

Supplied Equipment

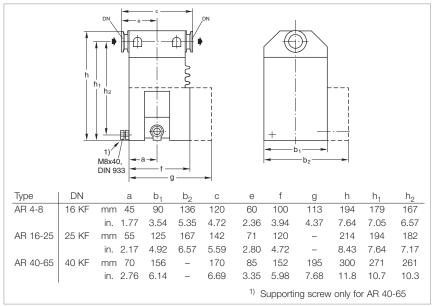
Intermediate flange, connecting lines with hollow screws, required gaskets as well as mounting screws for the intake flange.

Technical Information

The AR is connected to the exhaust port of the TRIVAC B, the return line is connected at the intermediate flange under the intake port.

An exhaust line must be connected in case of hazardous exhaust gases.

ARP 4-8 exhaust filter with lubricant return


This combination of an exhaust filter with a float-controlled valve considerably extends the maintenance intervals for the TRIVAC B.

Advantages to the User

- Filtering the exhaust air of entrained lubricant particles
- Lubricant return with the aid of a float-controlled valve back into the intake port
- No operating costs caused by lost **lubricant**
- Hardly any oil consumption
- Standard filter element
- Built-in over-pressure relief valve
- Resists solvents
- All seals made of FPM
- The top head may be easily rotated (either parallel or perpendicular to bottom body) [only AR 4-8 to AR 16-25]

Typical Application

- Extending the maintenance intervals

Dimensional drawing for the AR exhaust filters with lubricant return (dimensions for the ARP exhaust filter with lubricant return upon request)

Technical Data

ARP 4-8 AR 4-8 AR 16-25 AR 40-65

Connection to pump	TRIVAC	D 4/8 B	D 4/8 B	D 16/25 B/BCS	D 40/65 B/BCS
For opening the float-controlled valve required amount of oil N 62 remaining amount of oil N 62	cm ³ (qt)	- -	430 (0.45) 350 (0.37)	510 (0.54) 430 (0.45)	760 (0.80) 700 (0.74)
Weight	kg (lbs)	1.7 (3.8)	3.1 (6.89	4.7 (10.4)	8.5 (18.7)

Ordering Information

ARP 4-8 AR 4-8 AR 16-25 AR 40-65

Exhaust filter with lubricant return	Part No.	Part No.	Part No.	Part No.
	140 065	189 20	189 21	189 22
Replacement filter element				
FE 8	190 80	_	_	_
FE 4-8	-	189 71	_	_
FE 16-25	-	_	189 72	_
FE 40-65	_	_	_	189 73

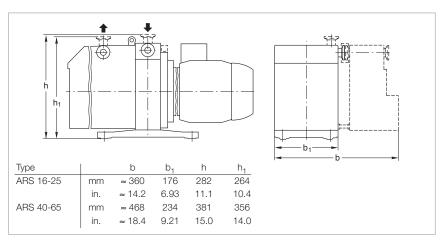
Exhaust Filters with Lubricant Return ARS 16-25 and ARS 40-65

ARS 40-65

This combination of an exhaust filter with a float-controlled valve considerably extends the maintenance intervals of the TRIVAC BCS.

The ARS is part of the TRIVAC SYSTEM.

Advantages to the User


- Lubricant return with the aid of a float-controlled valve back into the intake port
- The intake port may be easily exchanged (either vertical or horizontal orientation)
- No operating costs caused by lost lubricant
- Hardly any oil consumption
- Visual indication of the differential pressure
- Standard filter element
- All aluminium parts are surface protected
- Built-in over-pressure relief valve
- Resists solvents
- All seals made of FPM
- May also be used on the TRIVAC B

Typical Application

- Filtering the exhaust air of entrained lubricant particles

Technical Information

An exhaust line must be connected in case of hazardous exhaust gases.

Dimensional drawing for the ARS mounted on a TRIVAC BCS

The ARS is connected to the exhaust port of the TRIVAC BCS, the return line is connected at the intermediate flange under the intake port.

The ARS is cleaned in the factory to such an extent, that it may be operated either with mineral oil (e.g. N 62 or HE-200) or perfluoropolyther (PFPE e.g. NC 1/14 or HE-1600).

Supplied Equipment

Intermediate flange, connecting lines with hollow screws, required gaskets as well as mounting screws for the intake flange.

Wrapped in foil for shipping.

Technical Data ARS 16-25 ARS 40-65

Connection to pump	TRIVAC	D 16/25 B; D 16/25 B/BCS (-PFPE)	D 40/65 B/BCS (-PFPE)
Connection flanges	DN	25 KF	40 KF
Amount of oil required for opening the float-controlled valve	ng		
N 62/HE-200	cm ³ (qt)	510 (0.54)	760 (0.80)
PFPE	cm ³ (qt)	340 (0.36)	420 (0.44)
Remaining amount of oil			
N 62/HE-200	cm3 (qt)	430 (0.45)	700 (0.74)
PFPE	cm ³ (qt)	300 (0.31)	390 (0.41)
Weight with intermediate flange, tubing and filter,			
without lubricant	kg (lbs)	4.7 (10.4)	8.5 (16.7)

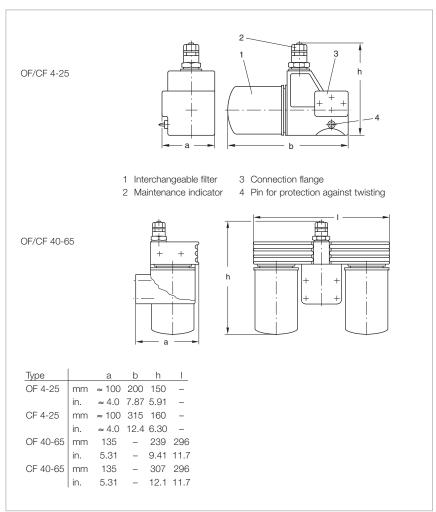
Ordering Information

ARS 16-25

ARS 40-65

Exhaust filter with lubricant return	Part No. 189 56	Part No. 189 57
Replacement filter element		
FE 16-25	Part No. 189 72	_
FE 40-65	_	Part No. 189 73

Mechanical Oil Filters OF 4-25 and OF 40-65 / Chemical Oil Filters CF 4-25 and CF 40-65


OF 4-25 mechanical oil filter

Since there is a pressure-lubrication system with an oil pump in every TRIVAC B, it is possible to connect main flow oil filters.

These filters are available either for mechanical filtering (OF types) or combined chemical/mechanical filtering (CF types).

Advantages to the User

- Main flow oil filter
- Longer service life for the oil depending on the type of application
- Can be installed without problems to the TRIVAC B
- Hose connections are not required
- Easily interchangeable filters
- Only a small amount of oil needs to be added when changing the filters
- Expansion of the range of applications in case of special requirements
- Same casing for OF and CF types
- Greater reliability by standard maintenance indicator
- Built-in bypass valve
- Owing to the highly effective adsorbent for polar substances, an up to ten-fold adsorption effect is attained over normal bleaching earth (CF)
- Prevents mechanical damage to the pump

Dimensional drawings for the OF mechanical oil filters and CF chemical oil filters

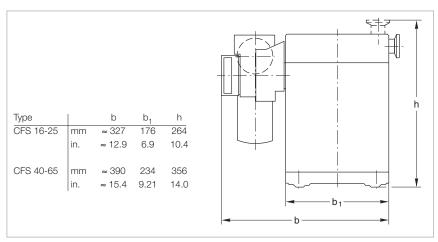
Typical Application

- Separation of fine particles from the pump's oil (sizes between 5 and 10 µm (OF))

Technical Data		OF 4-25	CF 4-25	OF 40-65	CF 40-65
Connection to pump	TRIVAC	D 4/8 B, D 16/25 B	D 4/8 B, D 16/25 B	D 40/65 B	D 40/65 B
Nominal throughput	l x h ⁻¹	900	900	2000	2000
Separation					
mechanical oil filter	μm	5 to 10	5 to 10	5 to 10	5 to 10
chemical oil filter	μm	to 3	to 3	to 3	to 3
Permissible operating pressure	bar (psig)	2.5 (21.7)	2.5 (21.7)	2.5 (21.7)	2.5 (21.7)
Opening pressure,					
non-return valve	bar (psid)	0.12 (1.7)	0.12 (1.7)	0.12 (1.7)	0.12 (1.7)
bypass valve	bar (psid)	$2.5 \pm 0.3 (21.7 \pm 4.3)$			
Topping up amount during					
first time installation	I (qt)	1.0 (1.0)	1.0 (1.0)	2.5 (2.6)	2.5 (2.6)
filter exchange	I (qt)	1.0 (1.0)	1.0 (1.0)	2.0 (2.1)	2.0 (2.1)
Weight, ready for operation, dry	kg (lbs)	4.0 (8.8)	4.0 (8.8)	10.0 (22.1)	10.0 (22.1)

Ordering Information	OF 4-25	CF 4-25	OF 40-65	CF 40-65
Mechanical oil filter	Part No. 101 91	-	Part No. 101 92	-
Chemical oil filter	-	Part No. 101 96	-	Part No. 101 97
WF 4-25 interchangeable filter, paper, 0.5 I (0.5 qt)	Part No. 189 91	-	-	-
WF 40-65 interchangeable filter, paper 0.75 I (0.8 qt)	-	-	Part No. 189 92 (2x)	Part No. 189 92 (2x)
WF Alu 4-65 interchangeable filter, paper and Al ₂ O ₃ , 1 I (1 qt)	-	Part No. 189 96	-	Part No. 189 96 (2x)

Chemical Filters with Safety Isolation Valve CFS 16-25 and CFS 40-65


CFS 40-65

The CFS chemical filters with safety isolation valve are main flow oil filters for the TRIVAC B and BCS pumps.

The CFS is part of the TRIVAC SYSTEM.

Advantages to the User

- The CFS is included in the main lubricant flow
- Rapid filter exchange the pump may contniue to operate while changing the filters
- Visual indication of the filter's condition through a maintenance indicator
- Aluminum component with isolation valve for one or two interchangeable
- All aluminium parts are surface pro-
- May be operated with different interchangeable filters
- Over-pressure relief valve in the interchangeable filters
- Prepared for connection of a differential pressure switch and an oil pressure switch
- May also be used on the TRIVAC B pumps

Dimensional drawing for the CFS (mounted on a TRIVAC BCS)

Technical Information

The CFS is cleaned in the factory to such an extent, that it may be operated either with mineral oil (e.g. N 62 or HE-200) or perfluoropolyther (PFPE e.g. NC 1/14 or HE-1600).

Supplied Equipment

All gaskets and mounting parts required for installation.

Aluminium particle filters (WF Alu-Part) sealed for shipping are included separately.

Technical Data CFS 16-25 CFS 40-65

Connection to pump TRIV	/AC	D 16/25 B/BCS (-PFPE)	D 40/65 B/BCS (-PFPE)
Nominal throughput I x	h ⁻¹	900	2000
Permissible operating pressure bar (p:	sia)	2.5 (21.7)	2.5 (21.7)
Opening pressure	3/	2.0 (2.11)	2.0 (2)
Non-return valve bar (p	sid)	2.5 (21.7)	2.5 (21.7)
Bypass valve bar (p	sid)	$2.5 \pm 0.3 (21.7 \pm 4.3)$	$2.5 \pm 0.3 (21.7 \pm 4.3)$
Filter medium		Al_2O_3	Al_2O_3
Lubricant filling when using			
WF Alu-Part I	(qt)	1.4 (1.5)	3.3 (3.5)
Weight, ready for operation, dry kg (lbs)	7.0 (15.4)	15.5 (34.1)

Ordering Information

3		
Chemical filter with safety isolation valve	Part No. 101 76	Part No. 101 77
WF Alu-Part combination filter, paper and Al ₂ O ₃ , 1.6 I (1.7 qt)	Part No. 189 99	Part No. 189 99 (2x)
WF particle filter, paper, 1.6 I (1.7 qt)	Part No. 200 09 804	Part No. 200 09 804 (2x)
WFG particle filter, paper with support mesh, 1 l (1 qt)	Part No. 189 90	Part No. 189 90 (2x)

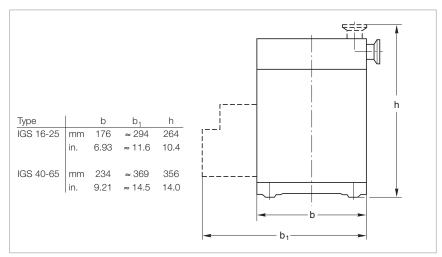
CFS 16-25

CFS 40-65

Inert Gas System IGS 16-25 and IGS 40-65

IGS

This accessory, which is controlled via solenoid valves, permits the controlled admission of special gases into the TRIVAC BCS.


The IGS is part of the TRIVAC SYSTEM.

Advantages to the User

- Ready for connection to an inert gas supply
- Solenoid valve for reduced gas ballast
- Solenoid valve for purging the oil box
- Float throughput gauge with throttling valve adjustable from 200 to 700 l x h⁻¹
- The flowing quantity can be read directly
- System protection by a non-return valve (requires a reservoir pressure of at least 3 bar (29 psi, gauge)) – this reliably prevents the reservoir vessel from being evacuated
- Connects directly on to the TRIVAC BCS

Typical Applications

- Reduction of the contamination levels in the lubricant
- Reduction in the dwell time of volatile substances within the pump

Dimensional drawing for the IGS (mounted on a TRIVAC BCS)

Technical Information

The amount of inert gas ballast is restricted by a nozzle to 200 l x h⁻¹. Larger quantities are used for purging.

Supplied Equipment

Solenoid valves with connection cables and plugs for connection to the electric indicator system EIS, the required connecting pieces, mounting screws and cover panel.

Technical Data IGS 16-25 IGS 40-65

Connection to pump	TRIVAC	D 16/25 BCS (-PFPE)	D 40/65 BCS (-PFPE)
Min. amount of admitted gas at a reservoir pressure of 3.0 bar (29 psig)	l x h ⁻¹	200	200
Max. amount of admitted gas at a reservoir pressure of 6.0 bar (72.5 psig)	l x h ⁻¹	1450	1450
Supply voltage for the solenoid	valves V DC	24	24
Power consumption	W	10	10
Weight	kg (lbs)	1.0 (2.2)	1.4 (3.1)
Connection thread	G (BPS)	1/8"	1/8"

Ordering Information

IGS 16-25

IGS 40-65

Inert	aas	system
	940	0,000

Part No. 161 76

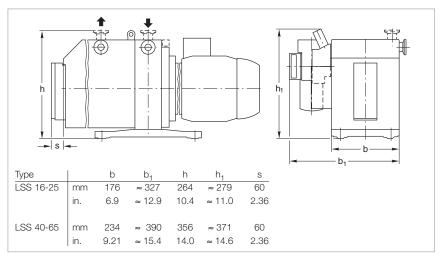
Part No. 161 77

63 C01

Limit Switch System LSS 16-25 and LSS 40-65

LSS

This accessory consists of a package of limit switches. It is used to monitor system functions.


The LSS is part of the TRIVAC SYSTEM.

The package of limit switches includes:

- Differential pressure switch to monitor the CFS
- Oil pressure switch to monitor the operating pressure
- Flow switch to monitor the inert gas flow
- Pressure switch to monitor the pressure in the oil box of the pump
- Connection cable and plug for the temperature switch used for temperature monitoring
- Float switch with housing to monitor the oil level

Advantages to the User

- Errors are indicated well in advance so that it will in most cases be possible to complete the process for the running batch
- The switching action is independent of the optical displays (for optimum reliability)
- The temperature switch is already present in the TRIVAC BCS

Dimensional drawing for the LSS (mounted on a TRIVAC BCS)

Typical Application

Changing the status in case operating conditions arise which are not permissible

Supplied Equipment

LSS 16-25

Fully wired-up switches with plugs as well as all required gaskets and mounting parts.

LSS 40-65

Technical Data

Connection to pump	TRIVAC	D 16/25 BCS (-PFPE)	D 40/65 BCS (-PFPE)
Operating voltage	V DC	24	24
Switching capacity	W/A	10.0 / 0.4	10.0 / 0.4
Type of protection	IP	54	54
Weight, approx.	kg (lbs)	2.5 (5.5)	2.5 (5.5)

Ordering Information	LSS 16-25	LSS 40-65
Limit switch system	Part No. 161 06	Part No. 161 07

Electrical Indicator System EIS 40-65

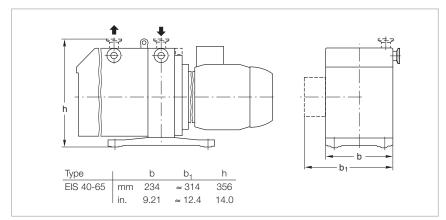
EIS

This accessory electrically links all switches from the limit switch system and the electrical indicator system so that the position of each switch is indicated optically by LEDs.

The EIS is part of the TRIVAC SYSTEM.

Advantages to the User

- Connects directly to the LSS
- LEDs arranged conveniently on the side of the BCS which carries the controls
- Socket and plug for supplying and controlling the connected valves, no soldering is required
- Socket for remote signal transmission
- For direct, compact installation to
- IP 54 protection
- Each pair of LEDs (red or green) is clearly marked


Supplied Equipment

Housing, complete with all sockets for the components of the system.

Socket and plug for 24 V DC supply.

Socket for operating the solenoid valves of the IGS and remote data transmission.

Cover panel and all required mounting screws.

Dimensional drawing for the EIS (mounted on a TRIVAC BCS)

Technical Data

EIS 40-65

TRIVAC	D 40/65 BCS (-PFPE)
V DC	24
V DC	24
Α	3
IP	54
kg (lbs) kg (lbs)	2.5 (5.5) 4.0 (8.8)
	V DC V DC A IP kg (lbs)

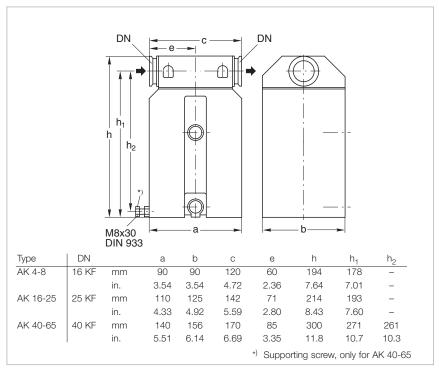
Ordering Information

EIS 40-65

Electrical indicator system	Part No. 160 97
Connection plug for transmission of the "green" signals	Part No. 200 80 078

Condensate Separators AK 4-8, AK 16-25, AK 40-65

AK 4-8 condensate separator


Separators protect the pump against condensate

Advantages to the User

- May be installed without accessories
- May be used either on the intake or the exhaust side
- Independent of the direction of flow
- Condensate level check via inspection glass
- Resists solvents
- All seals made of FPM

Ordering Information

- Simple to clean
- Easy to use
- Drained via drain screw or drain tap

AK16-25

Dimensional drawing for the AK condensate separators

Typical Application

- Prevention of the collection of liquids in the intake line

Technical Information

Depending upon the layout and pipe run of an exhaust line, it may be necessary to install a separator to prevent condensate draining back to the pump.

Technical Data		AK 4-8	AK16-25	AK 40-65
Connection to pump	TRIVAC	D 4 B D 8 B	D 16 B/BCS (-PFPE) D 25 B/BCS (-PFPE)	D 40 B/BCS (-PFPE) D 65 B/BCS (-PFPE)
Capacity for condensate	I (qt)	0.66 (0.7)	1.2 (1.3)	3.0 (3.2)
Weight	kg (lbs)	1.7 (3.7)	2.4 (5.3)	5.5 (12.1)

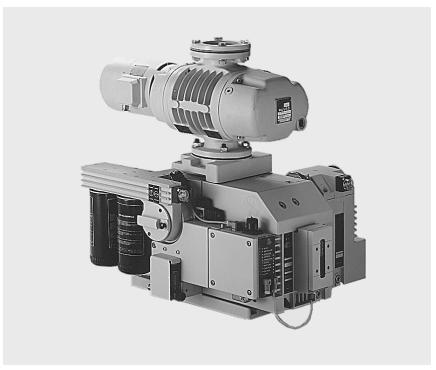
Condensate separator	Part No. 188 06	Part No. 188 11	Part No. 188 16
Oil Drain tap M 16 x 1.5 (vacuum-tight)	Part No. 190 90	Part No. 190 90	Part No. 190 90
Adaptor DN 16 KF – hose nozzle DN 7	Part No. 182 90	-	-

AK 4-8

AK 40-65

Roots Pump Adaptor

Roots pump adaptor


The Roots pump adaptor allows the direct installation of a Roots pump on a TRIVAC D 40/65 B/BCS.

Advantages to the User

- Compact and space-saving
- Short and direct connection between the pumps
- Minimal conductance loss
- Easy installation

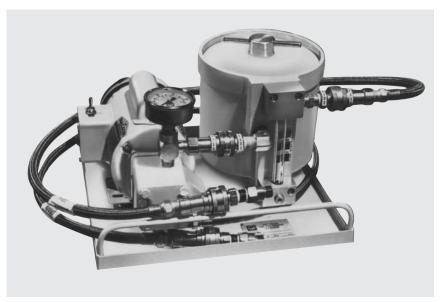
Typical Application

- Simple assembly of a small pump system

Pump system consisting of a TRIVAC D 65 BCS and a RUVAC WS 251

Technical Data

Roots Pump Adaptor


Connection to pump	TRIVAC	D 40/65 B/BCS (-PFPE) and RUVAC WA/WAU/WS/WSU 251
Weight, approx.	kg (lbs)	11.5 (25.4)

Ordering Information

Roots Pump Adaptor

Roots pump adaptor	Part No. 168 30
--------------------	-----------------

OF1000 Oil Filtering System

OF1000 Oil Filtering System

Advantages to the User

- Choice of single- and dual-canister models for standard or chemically severe applications
- Compact design
- Reliable operation
- Choice of four filtering elements
- Dripless quick disconnects for easy removal and replacement of filter elements
- Recessed lid and oil level no oil spillage

- Conductive Teflon hoses for static charge dissipation - no oil leakage due to static burning
- Integral gear pump with built-in bypass
- Fluid sight glass and flow monitor
- Pressure gauge
- Small precharge fluid volume
- Single phase 50/60 Hz motors standard

Applications

Standard series models are widely used in silicon production processes, including LPCVD, low-pressure epitaxy, ion implantation, reactive ion etching and several plasma processes. Such processes employ a variety of gases which can react with pump fluid, resulting in the formation of sludge, particulates and acids. The standard OF1000 model has proven effective at extending maintenance intervals in such applications.

Similarly, chemically resistant OF1000C models have proven successful in aluminum etching and other processes where boron trichloride and other highly toxic gases are employed. The canister, gear pump, fittings and quick disconnects of the corrosive-service model have been specially treated with a fluorocarbon material that substantially increases the life of these components.

OF 1000 oil filtering systems are designed to remove acids and particulates from the lubricating fluid used in Oerlikon Leybold Vacuum mechanical vacuum pumps. The systems are located externally from the vacuum pump, and utilize their own integral gear pump in conjunction with a bypass to

continuously recycle fluid through a filtering medium; the medium is housed in an element/canister assembly which additionally serves to absorb heat, and thus reduce the operating temperature of the vacuum pump.

OF1000 systems are available in both single- and dual-canister designs. Both types are highly compact and reliable, and can be supplied in models for standard or chemically severe applications. Single-canister OF1000 models are distinguished by their smaller footprint while dual-canister configurations afford the advantages of multi-media filtration and increased oil capacity. Dual-canister models are designed for series flow through two side-by-side mounted canisters, and thus can be used to filter oil through two different media on the same pass or for double filtration through elements containing the same medium. The models also enable the vacuum pump to operate at somewhat lower temperatures, while providing it with a larger supply of clean, filtered oil.

All OF1000 models are supplied with a choice of four filtering elements. The Fullers Earth element provides high capacity for standard acids and

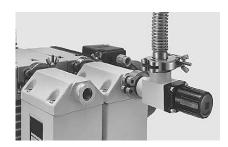
can be used to trap particulates down to 10 micron in size. Hydrophilic, activated alumina and fiberglass particulate elements are also available. The Hydrophilic element is particularly effective for hydrolized acids, and can also be used to trap particles as small as 1 micron. The Activated Alumina element provides 10 micron particulate retention and is extremely effective for Lewis acids and polar compounds. The fiberglass element is suitable for particulate removal down to 10 micron.

The element/canister assembly of OF1000 systems is easy to install, extremely easy to remove and replace. The recessed lid and oil level of the assembly safeguards against the possibility of spillage. Dripless quick disconnects are also provided for easy canister removal and safer disposal of the filtering element and oil.

OF1000 systems also come equipped with flexible Teflon hoses designed to resist dielectric breakdown. The systems thus ward against the possibility of oil leaks due to pinholing or static burning of the hose.

Dual-Canister Technical Data Single-Canister Systems Systems Gear pump motor 1/6 HP, 115/208/220V, single phase, 1/6 HP, 115/208/220V, single phase, 50/60Hz, 50/60Hz, wired for 115V, with on/off switch 1) wired for 115V, with on/off switch 1) Gear pump 0.7 gpm @ 1800 RPM 0.7 gpm @ 1800 RPM Pressure gauge 0 to 100 psig (0 to 70 kPa) 0 to 100 psig (0 to 70 kPa) Pump fluid capacity 15 lb perfluorinated polyether 29 lb perfluorinated polyether or 3.75 qt hydrocarbon oil or 7.25 qt hydrocarbon oil Flexible hoses 3/8 in. I.D. teflon/carbon black with 3/8 in. I.D. teflon/carbon black with stainless steel braid – 4 ft lengths ²⁾ stainless steel braid - 4 ft lengths 2) Dimensions in. (mm) 16 x 14 x 11 (406 x 356 x 279) 23 x 14 x 11 (585 x 356 x 279) series 3) Flow arrangement Weight (Dry) lbs (kg) 45 (20.4) 60 (27.2)

¹⁾ Hazardous duty models and special voltages also available


 $^{^{2)}}$ Optional 6, 10 and 15 feet hoses available

³⁾ Optional parallel flow arrangement also available

Ordering Information	Single-Canister Systems	Dual-Canister Systems
Oil filtering system OF1000 less filtering element and oil	Part No. 898 550	Part No. 898 552
OF1000 prepared for PFPE,	1 art 140. 030 030	1 art 140. 030 332
less filtering element and oil	Part No. 898 551	Part No. 898 553
OF1000C chemically severe service,		
prepared for PFPE fluid	Part No. 898 561	Part No. 898 554
Accessories		
Spare filter canister sssembly		
with quick disconnect	Part No. 898 555	Part No. 898 557 (front),
		Part No. 898 555 (rear)
prepared for PFPE,	Part No. 898 556	Part No. 898 558 (front),
with quick disconnect		Part No. 898 556 (rear)
chemically severe service	Part No. 898 566	Part No. 898 559 (front),
	1 art No. 030 300	Part No. 898 566 (rear)
Filtering Elements		,
Aluminum Oxide	Part No. 898 504	Part No. 898 504
high capacity for reagent grade HCI;	1 art No. 030 304	1 art No. 030 004
removes Lewis acids and		
polar compounds;		
10 micron particulate retention		
Fullers Earth	Part No. 898 505	Part No. 898 505
acid and particulate filter with		
capacity of 34 ml reagent grade HCI;		
10 micron particulate retention		
Hydrophilic	Part No. 898 506	Part No. 898 506
water and		
HCI acid absorbing capabilities;		
1 micron particulate retention		
Particulate	Part No. 898 507	Part No. 898 507
fiberglass element with		
10 micron particulate retention		

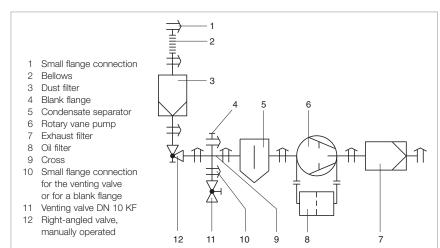
General Accessories

Flange Components, Valves

Our range of flange components and valves is described in detail in Product Sections C13 and C14.

Given in the following are only some components which you might find particularly useful when planning your system.

Isolation Valve


- The pump is allowed to warm up with the intake line isolated
- The pump may continue to operate in the energy-saving and environmentally compatible ultimate pressure mode when the vacuum chamber is vented briefly
- The pump may be left on after completion of the process so as to regenerate the oil

Branch (Cross)

- Installing a cross in the intake line permits the connection of a vacuum gauge and a venting valve

Flange Connections

Each flange connection requires one each centering and clamping ring.

Example of connecting a pump with accessories

Ordering Information

DN 16 KF DN 25 KF DN 40 KF

Small flange connection			
Clamping ring	Part No. 183 41	Part No. 183 42	Part No. 183 43
Centering ring, aluminum/CR	Part No. 183 26	Part No. 183 27	Part No. 183 28
Centering ring, stainless steel/FPM	Part No. 883 46	Part No. 883 47	Part No. 883 48
Bellows	Part No. 872 41	Part No. 872 43	Part No. 872 45
Right-angled valve, manually operated			
Aluminum casing	Part No. 287 11	Part No. 287 12	Part No. 287 13
Stainless steel casing	Part No. 288 11	Part No. 288 12	Part No. 288 13
Blank flange for (reducing) cross			
Aluminium	Part No. 184 46	Part No. 184 41	Part No. 184 41
Stainless steel	Part No. 884 36	Part No. 884 41	Part No. 884 41
Reducing cross (to DN 10 KF)			
Aluminum	_	Part No. 184 17	Part No. 184 19
Stainless steel	-	Part No. 884 92	Part No. 884 94
Cross DN 16 KF			
Aluminum	Part No. 184 71	_	_
Stainless steel	Part No. 884 85	_	_
Small flange connection for venting			
valve or blank flange			
Clamping ring	Part No. 183 41	Part No. 183 41	Part No. 183 41
(Adaptor) centering ring,			
aluminum/NBR	Part No. 183 56	Part No. 183 21	Part No. 183 21
(Adaptor) centering ring,			
stainless steel/FPM	Part No. 883 56	Part No. 883 21	Part No. 883 21
Venting valve DN 10 KF			
Aluminum	Part No. 173 24	Part No. 173 24	Part No. 173 24
Stainless steel	Part No. 173 37	Part No. 173 37	Part No. 173 37

Notes	

Miscellaneous

Vacuum Pump Oils

Lubricating oils for rotary vacuum pumps need to fulfil demanding requirements. Their vapor pressure must be low at high temperatures and the water content and water uptake must be minimal. Their viscosity characteristics need to be flat, lubricating properties need to be excellent and they must resist cracking upon being mechanically stressed.

All the vacuum pump oils listed in the following have been subjected in our factory laboratories to very comprehensive tests closely resembling the conditions encountered in practice by the pumps from the TRIVAC series.

We therefore recommend the exclusive use of vacuum pump oils fully qualified by Oerlikon Leybold Vacuum so as to ensure optimum performance of the Oerlikon Leybold Vacuum vacuum pumps and also to ensure optimum oil change intervals.

Under vacuum conditions lubricating oils, especially those with additives may behave quite differently than expected. Additives may adversely affect the attainable ultimate pressure and may react with the media being pumped.

When using not suitably qualified third party oils, the oil change intervals and the performance of the vacuum pump may be reduced. Also unwanted deposits may occur which may even cause severe damage to the vacuum pump.

Therefore please understand that we must make our warranty commitment dependent on the use of lubricant oils which have been qualified by us. Damage caused by usage of unsuitable, not qualified lubricant oils is not covered by our warranty.

In order to adapt the pumps to the different applications of our customers, different types of oil are used in the TRIVAC pumps.

Please note that owing to differing properties not all types of oil may be used in all pumps of the TRIVAC series. If you can not find the combination of pump and oil you require please ask us for a quotation.

Lubricant Types

Mineral Oils

Mineral oils are products distilled and refined from crude oil. These do not consist of precisely defined compounds but rather consist of a complex mixture. The way in which the mineral oil is pre-treated and its composition is decisive as to the applications it will be suited for. Depending on the distribution of the hydrocarbons and the dominance of certain properties, mineral oils are grouped according to paraffin-base, naphthenic and aromatic. For the purpose of attaining especially low ultimate pressures, mineral oils must be selected on the basis of a core fraction.

The thermal and chemical resistance of mineral oils has been found to be adequate in the majority of applications. They offer a high degree of compatibility with elastomers and resistance to hydrolysis.

Synthetic Oils

Synthetic oils are man-made. The group of synthetic oils includes liquids differing widely as to their chemical structure and composition. Correspondingly their physical and chemical properties differ considerably. Synthetic oils are used in those cases where special properties of the oil are required which can not be fulfiled by mineral oils.

The oils given in the following belong to the group of synthetic oils:

Polyalphaolefin (PAO) Oils

Polyalphaolefin oils are synthetic hydrocarbons which are paraffin like, but have a uniform structure. Thermal and chemical resistance is better compared to mineral oils. Elastomer compatibility and resistance against hydrolysis are comparable to mineral oils.

Ester oils

Ester oils are organic compounds which excel especially through their high thermal resistance to cracking compared to mineral oils. Chemical resistance is generally quite good, but will depend on the type of ester oil. Elastomer compatibility and resistance against hydrolysis are not so good compared to mineral oils.

Perfluorinated polyether (PFPE)

These are oils which are only composed of carbon (C), fluorine (F) and oxygen atoms (O). The existing C-O and C-F bonds are highly stable. For this reason PFPE oils are practically inert against all chemical and oxidising influences.

Perfluorinated polyethers will not polymerise under the influence of high energy radiation.

PFPE is non-flammable. Oerlikon Leybold Vacuum NC 1/14 has the approval of BAM (Federal Institute for Materials Research and Testing) for pumping of pure oxygen.

Perfluorinated polyethers are used when pumping strongly reactive substances like oxygen (O2), fluorine (F₂) and uranium hexafluoride (UF₆). Regarding Lewis acids (for example, boron trifluoride (BF₃), aluminum trichloride (AlCl₃) they are not completely inert. Here reactions may take place at temperatures over 100 °C (212 °F).

Perfluorinated polyethers are thermally highly stable. Thermal decomposition may only take place at temperatures of over 290 °C (554 °F)

Caution: Perfluorinated polyethers will - when decomposed - release toxic and corrosive gases: hydrogen fluoride (HF), carbonyl difluoride (COF₂). For this reason open fires must be avoided in the workspace where PFPE is being used. Do not smoke in the workspace where PFPE is being used.

Only suitably prepared pumps must be used in connection with perfluorinated polyethers, since it is essential that the pump be free of hydrocarbons. Changing from one basic type of oil to PFPE must be left exclusively to authorised Service Centers. The pumps will have to be fully disassembled and carefully cleaned. Gaskets and filters will have to be exchanged and suitable greases will have to be used.

Safety data sheets are available to professional users from: e-mail "documentation.vacuum@oerlikon.com" or Internet "www.oerlikon.com".

Oil Recommendations for Various Areas of Application

Application Data Special Oil N62 White Oil NC2

Type of oil	Paraffin-base mineral oil, core faction, free of additives	Medicinal, high purity white oil, paraffin-base, core fraction, free of additives, sulphur and aromatic compounds
Examples of areas of application and process media	Standard oil for Oerlikon Leybold Vacuum Germany For pumping air, chemically inert permanent gases (noble gases, for example), water vapor, solvent vapors in the case of laboratory pumps operated with cold traps	For pumping small quantities of chemically reactive substances like halogens (for example, hydrogen chloride HCl, hydrogen bromide HBr), halogenated hydrocarbons (for example, bromomethane CH ₃ Br, trichloromethane CHCl ₃), Lewis acids (for example, aluminum chloride AlCl ₃ , titanium tetrachloride TiCl ₄), acetic acid CH ₃ COOH
Remarks	The ultimate pressures stated in our catalogs are based on operation of the pump with N62 (except for the DOT and PFPE pumps) Service life may be extended through the use of an oil filter	When pumping the aforementioned process media humidity must be avoided Service life may be extended through the use of an oil filter
Elastomer compatibility FPM (Viton) NBR (Perbunan) 1) EPDM	Suited Conditionally suited Not suited	Suited Conditionally suited Not suited

Technical Data Special Oil N62 White Oil NC2

Viscosity at 40 °C (104 °F) at 100 °C (212 °F)	mm^2/s (= cSt) mm^2/s (= cSt)	90 10	60 8
Flash point	°C (°F)	> 255 (> 491)	> 240 (> 464)
Vapor pressure at 20 °C (68 °F) at 100 °C (212 °F)	mbar (Torr) mbar (Torr)	< 1 x 10 ⁻⁵ (< 8 x 10 ⁻⁶) < 3 x 10 ⁻³ (< 2 x 10 ⁻³)	< 1 x 10 ⁻⁵ (< 8 x 10 ⁻⁶) 5 x 10 ⁻³ (< 4 x 10 ⁻³)
Density at 15 °C (59 °F)	g/ml	0.88 ²⁾	0.86
Pour point	°C (°F)	< -9 (< 16)	< -12 (< 10)
Middle molecular weight	g/mol	550	480

Ordering Information Special Oil N62 White Oil NC2

1 litre (1.1 qt)	Part No. 177 01	-
5 litres (5.3 qt)	Part No. 177 02	Part No. 177 29
20 litres (21.1 qt)	Part No. 177 03	Part No. 177 27
180 kg (397.4 lbs)	Part No. 177 05	_

Please note that the technical data stated are only typical data. Slight variations from batch to batch must be expected.

The technical data stated here can not be taken as assured properties

 $^{^{1)}}$ Resistance to decomposing is very much dependent on the share of acrylonitrile in the NBR

²⁾ at 20 °C (68 °F)

Application Data SHC 224 ANDEROL® 555

Type of oil	Polyalphaolefin PAO	Diester oil
Examples of areas of application and process media	Cold starting at low temperatures is possible. Pumping of chemically inert permanent gases (for example, noble gases) water vapor in small quantities, refrigerants R 717 (ammonia NH ₃)	Used at elevated temperatures, pumping of air, chemically inert permanent gases (noble gases, for example), carbon dioxide CO ₂ , carbon monoxide CO, aliphatic compounds (for example methane CH ₄ , propane C ₃ H ₈ , ethylene C ₂ H ₄), organic solvent vapors
Remarks	Service life may be extended through the use of an oil filter	Do not pump any inorganic acids (HCl, HF, for example), no free halogens (Cl ₂ , F ₂ , for example) or alkaline media (NH ₃ , for example)
Elastomer compatibility FPM (Viton) NBR (Perbunan) 1) EPDM	Suited Conditionally suited Not suited	Suited Conditionally suited Not suited

Technical Data SHC 224 ANDEROL® 555

Viscosity at 40 °C (104 °F) at 100 °C (212 °F)	mm ² /s (= cSt) mm ² /s (= cSt)	29 5.6	94 9
Flash point	°C (°F)	230 (446)	250 (482)
Vapor pressure at 20 °C (68 °F) at 100 °C (212 °F)	mbar (Torr) mbar (Torr)	1 x 10 ⁻⁵ (< 0.75 x 10 ⁻⁵) 8 x 10 ⁻³ (< 6 x 10 ⁻³)	7 x 10 ⁻⁵ (< 5 x 10 ⁻⁵) 1.5 x 10 ⁻³ (< 1 x 10 ⁻³)
Density at 15 °C (59 °F)	g/ml	0.83	0.96
Pour point	°C (°F)	< -55 (< -67)	-42 (< -44)
Middle molecular weight	g/mol	476	530

Ordering Information SHC 224 ANDEROL® 555

1 litre (1.1 qt)	Part No. 200 28 181	Part No. 200 10 272
5 litres (5.3 qt)	-	Part No. 200 10 891
20 litres (21.1 qt)	-	Part No. 200 00 193

Please note that the technical data stated are only typical data. Slight variations from batch to batch must be expected. The technical data stated here can not be taken as assured properties

ANDEROL® is a trademark of ANDEROL BV

¹⁾ Resistance to decomposing is very much dependent on the share of acrylonitrile in the NBR

Application Data

ANDEROL® RCF-E68N

NC 10

Type of oil	Polycarboxylic acid ester	Alkyl sulphonic acid ester
Examples of areas of application and process media	Cooling and air-conditioning applications. For refrigerants (for example halocarbon, R134a), HCFC (for example, R123), HFC (for example, R218), CFC (for example, R12) and HC (for example, R600a)	When pumping process media which tend to polymerise (for example, styrene C ₈ H ₈ , butadiene C ₄ H ₆).
Remarks	Use only correspondingly modified pumps Mixing with other types of oil must be absolutely avoided	Do not use a chemical oil filter Mixing with other types of oil must be absolutely avoided Do not pump any inorganic acids
	Do not pump any inorganic acids (for example HCl, HF)	(for example HCl, HF)
Elastomer compatibility FPM (Viton) NBR (Perbunan) 1) EPDM	Suited Conditionally suited Not suited	Suited Not suited Not suited

Technical Data

ANDEROL® RCF-E68N

NC 10

Viscosity at 40 °C (104 °F) at 100 °C (212 °F)	mm²/s mm²/s	68 10	38 4
Flash point	°C (°F)	260 (500)	225 (437)
Vapor pressure at 20 °C (68 °F) at 100 °C (212 °F)	mbar (Torr) mbar (Torr)	No known No known	1 x 10 ⁻⁴ (8 x 10 ⁻⁵) No known
Density at 15 °C (59 °F)	g/ml	1.00	1.05 ²⁾
Pour point	°C (°F)	-54 (-65)	-30 (-22)
Middle molecular weight	g/mol	Not applicable	Not applicable

Ordering Information

ANDEROL® RCF-E68N

NC 10

1 litre (1.1 qt)	Part No. 200 02 754	-
20 litres (21.1 qt)	-	Part No. 177 25

Please note that the technical data stated are only typical data. Slight variations from batch to batch must be expected. The technical data stated here can not be taken as assured properties

ANDEROL® is a trademark of ANDEROL BV

¹⁾ Resistance to decomposing is very much dependent on the share of acrylonitrile in the NBR

²⁾ at 20 °C (68 °F)

DOT 4 **Application Data** NC 1/14

Type of oil	Brake fluid	PFPE
Examples of areas of application and process media	Filling of brake fluid circuits in the car industry	For pumping strong oxidants like oxygen, O ₂ , ozone O ₃ , nitrogen oxides NOx and sulphur oxides (SO ₂ , SO ₃) as well as reactive substances like halogens (for example fluorine F ₂ , chlorine Cl ₂), hydrogen halides (for example hydrogen chloride HCl, hydrogen bromide HBr), uranium hexafluoride UF ₆ , and conditionally Lewis acids (for example, boron trichloride BCl ₃)
Remarks	Use only in pumps modified for DOT 4 Mixing with other types of oil must be absolutely avoided	Use only in pumps modified for PFPE Mixing with other types of oil must be absolutely avoided Avoid pumping water vapor, especially with corrosive media (see above) The use of a chemical oil filter CF / CFS is strongly recommended
Elastomer compatibility FPM (Viton) NBR (Perbunan) 1) EPDM	Not suited Not suited Suited	Suited Suited Suited

Technical Data DOT 4 NC 1/14

Viscosity at 40 °C (104 °F) at 100 °C (212 °F)	mm^2/s (= cSt) mm^2/s (= cSt)	No known > 2	47 5
Flash point	°C (°F)	> 120 (> 248)	_ 2)
Vapor pressure at 20 °C (68 °F) at 100 °C (212 °F)	mbar (Torr) mbar (Torr)	1.3 (0.98) No known	3 x 10 ⁻⁷ (2.25 x 10 ⁻⁷) 6 x 10 ⁻⁴ (4.5 x 10 ⁻⁴)
Density at 15 °C (59 °F)	g/ml	1.05	1.89 ³⁾
Pour point	°C (°F)	Not applicable	-40 (-40)
Middle molecular weight	g/mol	Not applicable	2500

DOT 4 NC 1/14 **Ordering Information**

Pa	t No. 200 10 037	Part No. 177 38
Pa	t No. 200 10 037	Part No. 177 38

Please note that the technical data stated are only typical data. Slight variations from batch to batch must be expected. The technical data stated here can not be taken as assured properties

¹⁾ Resistance to decomposing is very much dependent on the share of acrylonitrile in the NBR

²⁾ Caution: Perfluorinated polyether compounds will, when being decomposed at temperatures over 290 °C (554 °F), release toxic and corrosive gases. For this reason open fires must be avoided in the workspace where PFPE is being used. Do not smoke in the workspace where PFPE is being used $^{3)}$ at 20 °C (68 °F)

Only available for purchase in North and South America

Application Data HE-200 HE-1600

Type of oil	Paraffin-base mineral oil, core faction, free of additives	PFPE
Examples of areas of application and process media	Standard oil for Oerlikon Leybold Vacuum USA For pumping air, chemically inert permanent gases (noble gases, for example), water vapor, solvent vapors in the case of laboratory pumps operated with cold traps	For pumping strong oxidants like oxygen, O ₂ , ozone O ₃ , nitrogen oxides NOx and sulphur oxides (SO ₂ , SO ₃) as well as reactive substances like halogens (for example fluorine F ₂ , chlorine Cl ₂), hydrogen halides (for example hydrogen chloride HCl, hydrogen bromide HBr), uranium hexafluoride UF ₆ , and conditionally Lewis acids (for example, boron trichloride BCl ₃)
Remarks	The ultimate pressures stated in our catalogs are based on operation of the pump with HE-200 (except for the DOT and PFPE pumps) Service life may be extended through the use of an oil filter	Use only correspondingly modified pumps Mixing with other types of oil must be absolutely avoided The uptake of water vapor must be avoided The use of an oil filter is strongly recommended
Elastomer compatibility FPM (Viton) NBR (Perbunan) ¹⁾ EPDM	Suited Conditionally suited Not suited	Suited Suited Suited

Technical Data HE-200 HE-1600

Viscosity at 40 °C (104 °F) at 100 °C (212 °F)	mm ² /s (= cSt) mm ² /s (= cSt)	58 9.1	140 ²⁾ 7
Flash point	°C (°F)	224 (435)	_ 3)
Vapor pressure at 25 °C (77 °F) at 100 °C (212 °F)	mbar (Torr) mbar (Torr)	4.7 x 10 ⁻⁶ (3.5 x 10 ⁻⁶) 3.9 x 10 ⁻⁴ (2.9 x 10 ⁻⁴)	7 x 10 ⁻⁷ (5 x 10 ⁻⁷) ²⁾ 3 x 10 ⁻⁴ (2 x 10 ⁻⁴)
Density at 20 °C (68 °F)	g/ml	0.88	1.86
Pour point	°C (°F)	-10 (14)	-40 (-40)
Molecular weight		480	3000

Ordering Information HE-200 HE-1600

1 qt (1 l)	Part No. 98 198 006	-
1 gal (3.8 l)	Part No. 98 198 007	-
5 gal (18.9 l)	Part No. 98 198 008	-
55 gal (208 l)	Part No. 98 198 010	-
Bottle 2 lb (0.91 kg)	-	Part No. 898 564-1
Bottle 4 lb (1.81 kg)	-	Part No. 898 564-2
Bottle 16 lb (7.25 kg)	-	Part No. 898 564-4

Please note that the technical data stated are only typical data. Slight variations from batch to batch must be expected.

The technical data stated here can not be taken as assured properties

¹⁾ Resistance to decomposing is very much dependent on the share of acrylonitrile in the NBR

³⁾ Caution: Perfluorinated polyether compounds will, when being decomposed at temperatures over 290 °C (554 °F), release toxic and corrosive gases. For this reason open fires must be avoided in the workspace where PFPE is being used. Do not smoke in the workspace where PFPE is being used

Notes	

Services

On-site Replacement of the Dynamic Seals (with oil N62) 1)

The on-site replacement of the dynamic seals includes the following:

Partial disassembly of the pump, replacement of the complete shaft seal, mounting of the pump including new gaskets and standard oil N62, electrical safety test, test run including check of the attained ultimate pressure levels

Ordering Information

On-site Replacement of the Dynamic Seals (with oil N62) 1)

For pump	
TRIVAC S/D 4 B	Part No. AS 1130 F
TRIVAC S/D 8 B	Part No. AS 1130 F
TRIVAC S/D 16/25 B	Part No. AS 1129 F
TRIVAC S/D 40/65 B	Part No. AS 1128 F
TRIVAC S/D 40/65 BCS	Part No. AS 1137 F

Small On-site Maintenance (with oil N62) 1)

The small on-site maintenance includes the following:

Oil change (standard oil N62), filter replacement, visual inspection of the subassemblies, cleaning of the pump module and the oil box, electrical safety test, test run including check of the attained ultimate pressure levels

Ordering Information

On-site Maintenance (with oil N62) 1)

For pump	
TRIVAC S/D 4 B	Part No. AS 1160 F
TRIVAC S/D 8 B	Part No. AS 1159 F
TRIVAC S/D 16 B + BCS	
with standard gaskets	Part No. AS 1158 F
TRIVAC S/D 25 B + BCS	
with standard gaskets	Part No. AS 1157 F
TRIVAC S/D 40/65 B + BCS	
with standard gaskets	Part No. AS 1156 F
-	

¹⁾ Standard oil N62

Comprehensive On-site Maintenance (with oil N62) 2)

Comprehensive on-site maintenance includes the following:

Disassembly of the pump, cleaning of all individual components, replacement of all wearing parts, mounting of the pump including new gaskets and standard oil N62, electrical safety test, test run including check of the attained ultimate pressure levels

Ordering Information

Comprehensive On-site Maintenance (with oil N62) 2)

For pump		
TRIVAC S 4 B	Part No. AS 1127 F	
TRIVAC S 8 B	Part No. AS 1126 F	
TRIVAC D 4 B	Part No. AS 1125 F	
TRIVAC D 8 B	Part No. AS 1124 F	
TRIVAC S 16 B	Part No. AS 1123 F	
TRIVAC S 25 B	Part No. AS 1122 F	
TRIVAC D 16 B	Part No. AS 1121 F	
TRIVAC D 25 B	Part No. AS 1120 F	
TRIVAC S 40 B	Part No. AS 1119 F	
TRIVAC S 65 B	Part No. AS 1118 F	
TRIVAC D 40 B	Part No. AS 1117 F	
TRIVAC D 65 B	Part No. AS 1116 F	
TRIVAC D 40 BCS with Viton gaskets	Part No. AS 1136 F	
TRIVAC D 65 BCS with Viton gaskets	Part No. AS 1135 F	
TRIVAC S 40 BCS with standard gaskets	Part No. AS 1134 F	
TRIVAC S 65 BCS with standard gaskets	Part No. AS 1133 F	
TRIVAC D 40 BCS with standard gaskets	Part No. AS 1132 F	
TRIVAC D 65 BCS with standard gaskets	Part No. AS 1131 F	

2) Notes on our on-site after sales service

The listed services include the costs for material and working hours on site for standard TRIVAC pumps. Services for pump variants upon request.

Transportation and travelling expenses are invoiced at cost. All services refer to the repair of freely accessible and not contaminated vacuum components.

Complete Refurbishing at the Service Centre (with oil N62)

Complete refurbishing at the service centre includes the following:

Disassembly of the pump, visual inspection of the subassemblies, replacement of all wearing parts, machined reworking of the pump module, mounting of the pump including new gaskets and standard oil N62, electrical safety test, test run including check of the attained ultimate pressure levels.

Ordering Information

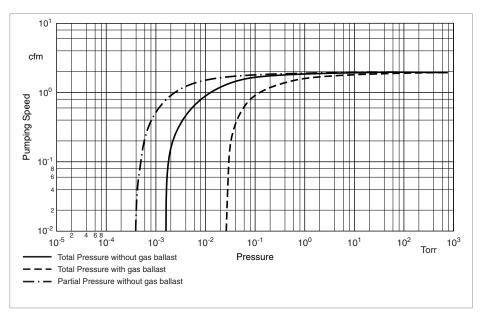
Complete Refurbishing at the Service Centre (with oil N62)

For pump	
TRIVAC S 4 B	Part No. AS 1127
TRIVAC S 8 B	Part No. AS 1126
TRIVAC D 4 B	Part No. AS 1125
TRIVAC D 8 B	Part No. AS 1124
TRIVAC S 16 B	Part No. AS 1123
TRIVAC S 25 B	Part No. AS 1122
TRIVAC D 16 B	Part No. AS 1121
TRIVAC D 25 B	Part No. AS 1120
TRIVAC S 40 B	Part No. AS 1119
TRIVAC S 65 B	Part No. AS 1118
TRIVAC D 40 B	Part No. AS 1117
TRIVAC D 65 B	Part No. AS 1116
TRIVAC D 40 BCS with Viton gaskets	Part No. AS 1136
TRIVAC D 65 BCS with Viton gaskets	Part No. AS 1135
TRIVAC S 40 BCS with standard gaskets	Part No. AS 1134
TRIVAC S 65 BCS with standard gaskets	Part No. AS 1133
TRIVAC D 40 BCS with standard gaskets	Part No. AS 1132
TRIVAC D 65 BCS with standard gaskets	Part No. AS 1131

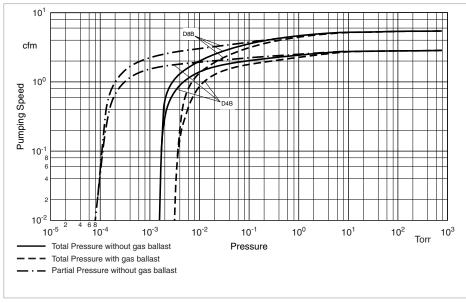
Complete Refurbishing with Decontamination at the Service Centre (with oil N62)

Complete refurbishing with decontamination at the service centre includes the following:

Disassembly of the pump, decontamination of the individual components, visual inspection of the individual subassemblies, replacement of all wearing parts, machined reworking of the pump module, mounting of the pump including new gaskets and standard oil N62, electrical safety test, test run including check of the attained ultimate pressure levels.

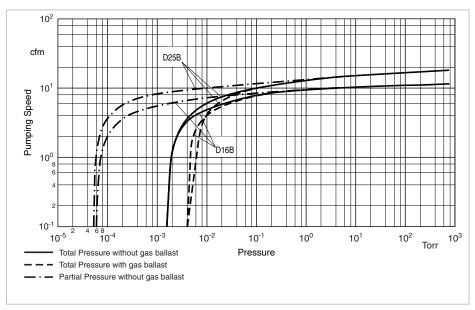

Ordering Information

Complete Refurbishing with Decontamination at the Service Centre (with oil N62)

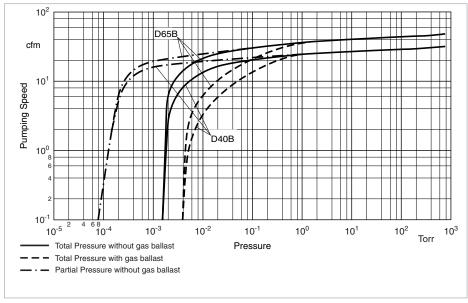

Part No. AS 1127 D
Part No. AS 1126 D
Part No. AS 1125 D
Part No. AS 1124 D
Part No. AS 1123 D
Part No. AS 1122 D
Part No. AS 1121 D
Part No. AS 1120 D
Part No. AS 1119 D
Part No. AS 1118 D
Part No. AS 1117 D
Part No. AS 1116 D
Part No. AS 1155 D
Part No. AS 1154 D
Part No. AS 1134 D
Part No. AS 1133 D
Part No. AS 1132 D
Part No. AS 1131 D

Only available for purchase in North and South America

60 Hz Curves



Pumping speed characteristics for the TRIVAC D 2.5 E at 60 Hz



Pumping speed characteristics for the TRIVAC D 4 B and D 8 B at 60 Hz

Only available for purchase in North and South America

Pumping speed characteristics for the TRIVAC D 16 B/BCS and D 25 B/BCS at 60 Hz

Pumping speed characteristics for the TRIVAC D 40 B/BCS and D 65 B/BCS at 60 Hz

Oerlikon Leybold Vacuum GmbH Bonner Strasse 498

D-50968 Cologne Phone: +49-(0)221-347 1234 +49-(0)221-347 1245 sales vacuum@oerlikon.com www.oerlikon.com

Oerlikon Leybold Vacuum GmbH Sales Area North/Northeast

Branch Office Berlin Buschkrugallee 33 1. Obergeschoss D-12359 Berlin Phone: +49-(0)30-435 609 0 +49-(0)30-435 609 10 sales.vacuum.bn@oerlikon.com

Leybold Vacuum GmbH Sales Area South/Southwest

Branch Office Munich Sendlinger Strasse 7 D-80331 Munich Phone: +49-(0)89-357 33 9-10 Fax: +49-(0)89-357 33 9-33 sales.vacuum.mn@oerlikon.com service.vacuum.mn @oerlikon.com

Oerlikon Leybold Vacuum GmbH Sales Area West & Benelux

Branch Office Cologne Bonner Strasse 498 Bonner Strasse 498 D-50968 Cologne Phone: +49-(0)221-347 1270 Fax: +49-(0)221-347 1291 sales.vacuum.kn@oerlikon.com

Oerlikon Leybold Vacuum GmbH Service Competence Center

Emil-Hoffmann-Strasse 43 D-50996 Cologne-Suerth Phone: +49-(0)221-347 1439 Fax: +49-(0)221-347 1945 service.vacuum.kn@oerlikon.com

Leybold Vacuum GmbH Mobil Customer Service

Emil-Hoffmann-Strasse 43 D-50996 Cologne-Suerth Phone: +49-(0)221-347 1765 +49-(0)221-347 1944 service.vacuum.kn@oerlikon.com

Leybold Vacuum GmbH, Dresden

Zur Wetterwarte 50, Haus 304 D-01109 Dresden Service:

Phone: +49-(0)351-88 55 00 Fax: +49-(0)351-88 55 041 info.vacuum.dr@oerlikon.com

Europe

Belgium

Oerlikon Leybold Vacuum Nederland B.V. Belgisch bijkantoor Leuvensesteenweg 542-9A

B-1930 Zaventem Sales:

Phone: +32-2-711 00 83 +32-2-720 83 38 sales.vacuum.zv@oerlikon.com Service:

Phone: +32-2-711 00 82 +32-2-720 83 38 service.vacuum.zv@oerlikon.com

France

Oerlikon Leybold Vacuum France S.A.

7, Ávenue du Québec Z.A. Courtaboeuf 1 - B.P. 42 F-91942 Courtaboeuf Cedex Sales and Service:

Phone: +33-1-69 82 48 00 Fax: +33-1-69 07 57 38 sales.vacuum.or@oerlikon.com

Leybold Vacuum France S.A.

Valence Factory 640, Rue A. Bergès - B.P. 107 F-26501 Bourg-lès-Valence Cedex Phone: +33-4-75 82 33 00 +33-4-75 82 92 69 info.vacuum.vc@oerlikon.com

Great Britain

Oerlikon Leybold Vacuum UK Ltd.

Silverglade Business Park Leatherhead Road UK-Chessington, Surrey KT9 2QL

Sales

Phone: +44-13-7273 7300 Fax: +44-13-7273 7301 sales.vacuum.ln@oerlikon.com Service:

Phone: +44-20-8971 7030 Fax: +44-20-8971 7003

Italy

Oerlikon Leybold Vacuum Italia S.p.A.

service.vacuum.ln@oerlikon.com

8, Via Trasimeno I-20128 Milano Sales

Phone: +39-02-27 22 31 Fax: +39-02-27 20 96 41 sales.vacuum.mi@oerlikon.com

Service:

Phone: +39-02-27 22 31 Fax: +39-02-27 22 32 17 service.vacuum.mi@oerlikon.com

Oerlikon

Leybold Vacuum Italia S.p.A. Field Service Base Z.I. Le Capanne

I-05021 Acquasparta (TR) Phone: +39-0744-93 03 93 Fax: +39-0744-94 42 87 service.vacuum.mi@oerlikon.com Netherlands

Oerlikon Leybold Vacuum Nederland B.V.

Proostwetering 24N NL-3543 AE Utrecht Sales and Service: Phone: +31-(30) 242 6330 Fax: +31-(30) 242 6331 sales vacuum ut@oerlikon.com service.vacuum.ut@oerlikon.com

Oerlikon Leybold Vacuum Spain, S.A.

C/. Huelva, 7 E-08940 Cornellà de Llobregat (Barcelona)

Sales:

Phone: +34-93-666 46 16 +34-93-666 43 70 sales.vacuum.ba@oerlikon.com Service:

Phone: +34-93-666 49 51 +34-93-685 40 10 service.vacuum.ba@oerlikon.com

Sweden

Oerlikon Leybold Vacuum Scandinavia AB

Box 9084 SE-40092 Göteborg Sales and Service: Phone: +46-31-68 84 70 Fax: +46-31-68 39 39 info.vacuum.gt@oerlikon.com Visiting/delivery address: Datavägen 57B SE-43632 Askim

Switzerland

Oerlikon

Leybold Vacuum Schweiz AG Leutschenbachstrasse 55 CH-8050 Zürich

Sales:

Phone: +41-044-308 40 50 Fax: +41-044-302 43 73 sales.vacuum.zh@oerlikon.com Service:

Phone: +41-044-308 40 62 +41-044-308 40 60 service.vacuum.zh@oerlikon.com

America

Oerlikon

Leybold Vacuum USA Inc. 5700 Mellon Road

USA-Export, PA 15632 Phone: +1-724-327-5700 Fax: +1-724-325-3577

info.vacuum.ex@oerlikon.com

Sales:

Eastern & Central time zones Phone: +1-724-327-5700 Fax: +1-724-333-1217 Pacific, Mountain, Alaskan & Hawaiian time zones Phone: +1-480-752-9191 +1-480-752-9494

Fax: Service:

Phone: +1-724-327-5700 +1-724-325-3577

Asia

PR China

Oerlikon Leybold Vacuum (Tianjin) International Trade Co. Ltd.

Beichen Economic Development Area (BEDA), Shanghai Road Tianjin 300400 China

Sales and Service:

Phone: +86-22-2697 0808 Fax: +86-22-2697 4061 +86-22-2697 2017 sales.vacuum.tj@oerlikon.com service.vacuum.ti@oerlikon.com

Oerlikon Leybold Vacuum (Tianjin) Co. Ltd.

Beichen Economic Development Area (BEDA), Shanghai Road Tianjin 300400 China

Sales and Service: Phone: +86-22-2697 0808 +86-22-2697 4061 +86-22-2697 2017 info.vacuum.ti@oerlikon.com service.vacuum.tj@oerlikon.com

Oerlikon Leybold Vacuum (Tianjin) International Trade Co. Ltd.

Shanghai Branch: Add: No.33 76 Futedong San Rd. Waigaoqiao FTZ Shanghai 200131 China

Sales and Service: Phone: +86-21-5064-4666 Fax: +86-21-5064-4668 info.vacuum.sh@oerlikon.com service.vacuum.ti@oerlikon.com

Oerlikon Leybold Vacuum (Tianjin) International Trade Co. Ltd.

Guangzhou Office and Service Center 1st F, Main Building Science City Plaza, No.111 Science Revenue, Guangzhou Science City (GZSC) 510663, Guangzhou, China

Sales:

Phone: +86-20-8723-7873 Phone: +86-20-8723-7597 +86-20-8723-7875 info.vacuum.gz@oerlikon.com service.vacuum.tj@oerlikon.com

Oerlikon Leybold Vacuum (Tianjin) International Trade Co. Ltd.

Beijing Branch: 1-908, Beijing Landmark Towers 8 North Dongsanhuan Road Chaoyang District Beijing 100004 China Sales

Phone: +86-10-6590-7622 Fax: +86-10-6590-7607 sales.vacuum.bj@oerlikon.com

Oerlikon Leybold Vacuum India Pvt Ltd. EL-22, J Block

MIDC Bhosari Pune 411026 India Sales and Service:

Phone: +91-20-3061 60000 Fax: +91-20-2712 1571 sales.vacuum.pu@oerlikon.com service.vacuum.pu@oerlikon.com

Japan

Oerlikon Leybold Vacuum Japan Co., Ltd.

Headquarter 23-3, Shin-Yokohama 3-chome Tobu A.K. Bldg. 4th Floor Kohoku-ku Yokohama-shi 222-0033

Sales:

Phone: +81-45-471-3330 Fax: +81-45-471-3323 info.vacuum.yh@oerlikon.com sales.vacuum.yh@oerlikon.com

Oerlikon Leybold Vacuum Japan Co., Ltd.

Osaka Sales Office 5-13, Kawagishi-machi Suita-chi Osaka 564-0037

Phone: +81-6-6393-5211 Fax: +81-6-6393-5215 info.vacuum.os@oerlikon.com sales.vacuum.os@oerlikon.com

Oerlikon Leybold Vacuum Japan Co., Ltd.

Tsukuba Technical Service Center Kogyo Danchi 21, Kasuminosato, Ami-machi, Inashiki-gun Ibaraki-ken, 300-0315

Service: Phone: +81-298 89 2841 Fax: +81-298 89 2838 info.vacuum.iik@oerlikon.com

sales.vacuum.iik@oerlikon.com

Oerlikon **Leybold Vacuum Korea Ltd.** 3F. Jellzone 2 Tower, 159-4 Jeongja-Dong, Bundang-Gu Sungnam-Si, Gyeonggi-Do Korea 463-384

Sales:

Korea

Phone: +82-31 785 1367 +82-31 785 1359

623-7, Upsung-Dong Cheonan-Si Chungcheongnam-Do Korea 330-290

Service:

Phone: +82-41 589 3035 +82-41 588 0166

Singapore

Oerlikon Leybold Vacuum Singapore Pte Ltd. 1 Science Park Road

Singapore Science Park 2 #02-12, Capricorn Building Singapore 117528 Sales and Service: Phone: +65-6303 7000 Fax: +65-6773 0039 sales.vacuum.sg@oerlikon.com

service.vacuum.sg@oerlikon.com

Oerlikon

Leybold Vacuum Taiwan Ltd. No 416-1, Sec. 3 Chung-Hsin Rd., Chu-Tung Hsin-Chu, Taiwan, R.O.C. Sales and Service: Phone: +886-3-500 1688 Fax: +886-3-583 3999 sales.vacuum.hc@oerlikon.com

service.vacuum.hc@oerlikon.com

Oerlikon Leybold Vacuum USA Inc. 5700 Mellon Road USA-Export, PA 15632

Phone: +1-724-327-5700 +1-724-325-3577 info.vacuum.ex@oerlikon.com Bonner Strasse 498

D-50968 Cologne Phone: +49-(0)221-347 0 +49-(0)221-347 1250 info.vacuum@oerlikon.com