

Total Pressure Gauges

Vacuum Gauges and Control Instruments 10⁻¹² - 2000 mbar (10⁻¹² - 1500 Torr) Calibration Service

179.01.02 Excerpt from the Oerlikon Leybold Vacuum Full Line Catalog Product Section C16 Edition May 2007

Contents

General	
Applications for Vacuum Gauges	4 6
Products	
Mechanical Gauges (Vacuum Gauges Analog Readout)	
Bourdon Vacuum Gauges	
Handheld Measurement Instruments	
THERMOVAC Sensor TM 90 C16.14 THERMOVAC Sensor TM 100 C16.16	
Active Sensors / Transmitters	
CERAVAC Transmitters CTR 100/CTR 91 THERMOVAC Transmitters TTR 91/TTR 91S/TTR 96S THERMOVAC Transmitters TTR 100/TTR 100 S2 PENNINGVAC Transmitters PTR 225/PTR 225 S/PTR 237 C16.30 PENNINGVAC Transmitter PTR 90 IONIVAC Transmitter ITR 90 IONIVAC Transmitter ITR 200 S C16.36	2 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Connection Cables for Active Sensors	1
Operating Units for Active Sensors	
DISPLAY ONE C16.46 DISPLAY TWO / THREE C16.48 CENTER ONE C16.50 CENTER TWO / THREE C16.50	3
Operating Units for Passive Sensors	
PIEZOVAC PV 20	1
Ultra High Vacuum Gauges	
IONIVAC IM 540	3
Additional Sensors	
IONIVAC Sensors IE 414/IE 514 C16.60 THERMOVAC Sensors TR 211/TR 211 NPT/TR 212/TR 216 C16.62 PENNINGVAC Sensors PR 25/PR 26/PR 27/PR 28 C16.64 Linear Pressure Sensors DI 200/DI 201/DI 2000/DI 2001/DI 2001 rel C16.66 Spare Sensors for Older Operating Units C16.68	2 4 6
Pressures Switches and Control Instruments	
Low Pressure Safety Switch PS 113 A	2 4
Miscellaneous	
Oerlikon Leybold Vacuum Calibration Service	3

General

Applications for Vacuum Gauges

						//	//	Suind to	//	MS/	ONINA CAR STRONGS		TR P	\ \
				/	/ /	ardra C	/ .g. /	Shiring to the state of the sta	HIL			xd/	Secretary S	Ch Child
				/	/,	/Sal			:116				JILL Y	``/
			IP						S(1)	200	x/3/	X/0;/	Mille Stille	\mathcal{E}_{x_i}
S		/	OKUP		1800	Suggest Constitution of the constitution of th	1/1/6		(65)	OVA	Cyle (7/9/		No Suite
Gauges	/	JP)	\J [®]	OSUIR	MA	Jan 1	, QP	Say)			W/k	MA		
<u> </u>	/ 9	5/ 9	5) C	<u>%</u> <) ₁ /5	8) C	X /\	<u> </u>	X) Q	<u> </u>), (?)\	200	0
Mechanical engineering														
Car industry; filling of brake and air conditioning systems														
Vacuum conveying technology														
Packaging technology														
Isolation vacuum														
Chemical processes														
Absolute pressure measurements in gas mixtures														
Drying and degassing processes														
Solvent recovery														
Vacuum pressure control in existing central vacuum supply systems														
Electrics/electronics/optics														
Evaporation and coating systems														
Monitoring and controlling of sputter systems														
Semiconductor technology (CVD, plasma etching etc.)														
Ion implantation														
Lamp production														
Analytical instruments and surface physics														
ESCA, SIMS, AES, XPS														
Electron microscopy														
Crystal growing														
Gas analysis systems, mass spectrometers														
Research														
Measurement of ultimate pressure in UHV systems														
Application in MBE systems														
Particle accelerators														
Beam guidance systems, cyclotron														
Fusion experiments														
Space simulation chamber														
System control/pressure control														
Pressure checks on backing pumps and vacuum systems														
Safety circuits in vacuum systems, protection of vacuum gate valves														
Control of ionization vacuum gauges														
Pressure measurements on HV pump systems, e.g. diffusion, TMP, cryopump systems														
Venting systems														
Valve control, pressure dependant systems control														
Simple pressure control arrangements Calibration														
Calibration of vacuum gauges and mass spectrometers														
Reference instruments for the determination														
of the physical properties of gases Precision measurements of low pressures also														
in the presence of corrosive or reactive gases Miscellaneous														
Vacuum annealing, melting, soldering and hardening furnaces														
Cooling and air conditioning technology														
Electron beam welding						_	_							
Metallurgy					_				Ī					

Select the Combination of Sensor and

Operating Range

10⁻¹¹10⁻¹⁰ 10⁻⁹ 10⁻⁸ 10⁻⁷ 10⁻⁶ 10⁻⁵ 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 1 mbar 10 100 1000 Capacitance Diaphragm CERAVAC Transmitters (x = 2, 3, 4 or 5) 1) **CTR 91** 1330→ 0.13 **CTR 91** 0.013 133 0.0013 **CTR 91** 13 **CTR 91** 0.00013 1.3 **CTR 91** 0.000013 0.13 0.13 1330→ **CTR 100** 0.013 **CTR 100** 133 **CTR 100** 0.0013 13 0.00013 1.3 **CTR 100** Thermal Conductivity (according to Pirani) THERMOVAC Transmitters 1) **TTR 100** 0.0005 1500→ (Pirani combined with capacitance diaphragm) **TTR 91** 0.0005 1000 TTR 96 S 0.0005 1000 Cold Cathode Ionization (according to Penning) **PENNINGVAC Transmitters** PTR 225, DN 25 KF 1 x 10⁻⁹ 0.01 0.01 PTR 237, DN 40 CF 1 x 10⁻⁹ 1000 PTR 90, DN 40 CF 5 x 10⁻⁹ PTR 90, DN 40 KF 5 x 10⁻⁹ 1000 PTR 90, DN 25 CF 1000 5 x 10⁻⁹ Hot Cathode Ionization IONIVAC Transmitters (Bayard-Alpert combined with Pirani) 1) **ITR 90** 1000 5 x 10-10 ITR 90 with Display 5 x 10⁻¹⁰ 1000 **IONIVAC Sensors** IE 414 (Bayard-Alpert) 2 x 10⁻¹¹ 0.01 0.0001 IE 514 (Extractor) 1 x 10⁻¹² Linear Diaphragm Sensors 2) DI 200 0.1 200 0.1 DI 201 200 DI 2000 2000→ DI 2001 2000→ DI 2001 rel. -1000 +1000→ 10⁻¹¹ 10⁻¹⁰ 10⁻⁹ 10⁻⁸ 10⁻⁷ 10⁻⁶ 10⁻⁵ 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 100 1000 mbar

¹⁾ Different Part Numbers depend on the vacuum connection

²⁾ Differences of the sensors in the same operating range caused by the materials in contact with the medium

Gauges which is ideal for your Application

Operating Units

	ONE	DISPLAY TWO	THREE	ONE	CENTER TWO	THREE	IONIVAC IM 540
Part No. EU Part No. US	230 001 235 001	230 024 235 024	230 025 235 025	230 002 235 002	230 004 235 004	230 003 235 003	230 100 230 100
				1	1, 2	1, 2, 3	3, 4
				1	1, 2	1, 2, 3	3, 4
				1	1, 2	1, 2, 3	3, 4
				1	1, 2	1, 2, 3	3, 4
				1	1, 2	1, 2, 3	3, 4
				1	1, 2	1, 2, 3	3, 4
				1	1, 2	1, 2, 3	3, 4
				1	1, 2	1, 2, 3	3, 4
				1	1, 2	1, 2, 3	3, 4
						, , -	•
				_			
		1, 2	1, 2, 3	1	1, 2	1, 2, 3	3, 4
	1	1, 2	1, 2, 3	1	1, 2	1, 2, 3	3, 4
		1, 2	1, 2, 3	1	1, 2	1, 2, 3	3, 4
		1, 2	1, 2, 3	1	1, 2	1, 2, 3	
		1, 2	1, 2, 3	1	1, 2	1, 2, 3	
		1, 2	1, 2, 3	1	1, 2	1, 2, 3	
		1, 2	1, 2, 3	1	1, 2	1, 2, 3	
		1, 2	1, 2, 3	1	1, 2	1, 2, 3	
				1	1, 2	1, 2, 3	
							1, 2
							1, 2

^{1, 2, 3} indicate the channel to which the sensor may be connected

Basic Terms of Vacuum Metrology

Today, the total range of vacuum pressure accessible to measurement extends from atmospheric pressure (about 1000 mbar (750 Torr)) down to 10⁻¹² mbar/Torr, i.e. it extends over 15 powers of ten. The instruments used for measuring the pressure within this wide range are called vacuum gauges. For physical reasons it is not possible to create a single vacuum sensor through which it might be possible to perform quantitative measurements within the entire pressure range. Therefore, a variety of different vacuum gauges are available, each with their own characteristic measurement range which commonly extends over several powers of ten. A difference is made between direct and indirect pressure measurements. In the case of direct (or absolute) pressure measurements, the readings obtained through the vacuum gauge are independent of the type of gas and the pressure which is to be measured. Common are so-called mechanical vacuum gauges where the pressure is determined directly by recording the force acting on the surface of a diaphragm. In the case of so-called indirect pressure measurements the pressure is determined as a function of a pressure dependant property of the gas (thermal conductivity, ionization probability, for example). These pro-perties do not only depend on the pressure, but also on the molar mass of the gases. For this reason, the pressure readings obtained through vacuum gauges which rely on indirect pressure measurements, depend on the type of gas. The readings usually relate to air or nitrogen as the measurement gas. For the measurement of other vapors or gases the corresponding correction factors must be applied.

Vacuum Gauges where the Pressure Readings are Independent of the Type of Gas (Mechanical Vacuum Gauges)

BOURDON Vacuum Gauge

The inside of a tube which is bent into a circular arc (the so-called Bourdon tube) is connected to the vacuum system. Due to the effect of the external atmospheric pressure, the end of the tube bends more or less during the evacuation process. This actuates the pointer arrangement which is attached to this point. The corresponding pressure can be read off on a linear scale. With Bourdon gauges it is possible to roughly determine pressures between 10 mbar (7.5 Torr) and atmospheric pressure.

Capsule Vacuum Gauge

This vacuum gauge contains a hermetically sealed, evacuated, thinwalled diaphragm capsule which is located within the instrument. As the vacuum pressure reduces, the capsule bulges. This movement is transferred via a system of levers to a pointer and can then be read off as the pressure on a linear scale.

Diaphragm Vacuum Gauge

In the case of the diaphragm vacuum gauge which is capable of absolute pressure measurements, a sealed and evacuated vacuum chamber is separated by a diaphragm from the vacuum pressure to be measured. This serves as the reference quantity. With increasing evacuation, the difference between the pressure which is to be measured and the pressure within the reference chamber becomes less, causing the diaphragm flex. This flexure may be transferred by mechanical means like a lever, for example, to a pointer and scale, or electrically by means of a strain gauge or a bending bar for conversion into an electrical measurement signal. The measurement range of such diaphragm vacu-um gauges extends from 1 mbar (0.75 Torr) to over 2000 mbar (1500 Torr).

Capacitance Vacuum Gauge

The pressure sensitive diaphragm of these capacitive absolute pressure sensors is made of Al₂O₃ ceramics. The term "capacitive measurement" means that a plate capacitor is created by the diaphragm with a fixed electrode behind the diaphragm. When the distance between the two plates of this capacitor changes, a change in capacitance will result. This change, which is proportional to the pressure, is then converted into a corresponding electrical measurement signal. Here too, an evacuated reference chamber serves as the reference for the pressure measurements. With capacitance gauges it is possible to accurately measure pressures from 10⁻⁵ mbar/Torr to well above atmospheric pressure, whereby different capacitance gauges having diaphragms of different thickness (and therefore sensitivity) will have to be used.

Vacuum Gauges where the Pressure Readings depend of the Type of Gas

Thermal Conductivity Gauge (Pirani)

This measurement principle utilizes the thermal conductivity of gases for the purpose of pressure measurements in the range from 10⁻⁴ mbar/Torr to atmospheric pressure. Today, only the principle of the controlled Pirani gauge is used by Oerlikon Leybold Vacuum in order to attain a quick response. The filament within the gauge head forms one arm of a Wheatstone bridge. The heating voltage which is applied to the bridge is controlled in such a way, that the filament resistance and thus the temperature of the filament remains constant regardless of the quantity of heat given off by the filament. Since the heat transfer from the filament to the gas increases with increasing pressures, the voltage across the bridge is a measure of the pressure.

Improvements with regard to temperature compensation have resulted in stable pressure readings also in the face of large temperature changes, in particular when measuring low pressures.

Cold Cathode Ionization Vacuum Gauge (Penning)

Here the pressure is measured through a gas discharge within a gauge head whereby the gas discharge is ignited by applying a high tension. The resulting ion current is output as a signal which is proportional to the prevailing pressure. The gas discharge is maintained also at low pressures with the aid of a magnet.

New concepts for the design of such sensors permit safe and reliable operation of these so-called Penning sensors in the pressure range from 10^{-2} to 1×10^{-9} mbar/Torr.

Hot Cathode Ionization Vacuum Gauge

These sensors commonly use three electrodes. A hot cathode emits electrons which impinge on an anode. The gas, the pressure of which is to be measured, is thus ionized. The resulting positive ion current is detected through the third electrode - the so-called ion detector - and this current is used as the signal which is proportional to the pressure.

The hot cathode sensors which are mostly used today, are based on the Bayard-Alpert principle. With this electrode arrangement it is possible to make measurements in the pressure range from 10⁻¹⁰ to 10⁻² mbar/Torr.

Other electrode arrangements permit access to a higher range of pressures from 10⁻¹ mbar/Torr down to 10⁻¹⁰ mbar/Torr. For the measurement of pressures below 10⁻¹⁰ mbar/Torr so-called extractor ionization sensors after Redhead are employed. In extractor ionization gauges the created ions are focused onto a very thin and short ion detector. Due to the geometrical arrangement of this system, interfering influences such as X-ray effects and ion desorption can be almost completely eliminated. The extractor ionization gauge permits pressure measurements in the range from 10^{-4} to 10^{-12} mbar/Torr.

Selection of the right Vacuum Gauge

When selecting a suitable instrument for pressure measurements, the pressure range is not the only critera. The operating conditions for the instrument play an important part. If, for example, there is the risk of excessive contamination, vibrations, or if air inrushes are to be expected etc., the instrument must be rugged enough. Thus for industrial applications diaphragm gauges, controlled thermal conductivity gauges as well as cold cathode ionization gauges after Penning are strongly recommended. Precision instruments are very often quite sensitive to rough operating conditions. These should therefore only be used while observing the corresponding applications information.

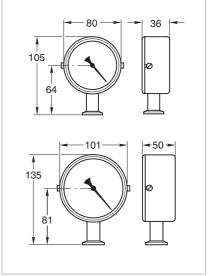
Connection Accessories for Small Flanges

Ordering Information	DN 10 KF	DN 16 KF	DN 25 KF
Outer centering ring with O-ring Aluminum / FPM (Viton)	Part No. 183 53	Part No. 183 54	Part No. 183 55
Fine filter on centering ring with O-ring Stainless steel / FPM (Viton)	Part No. 883 95	Part No. 883 96	Part No. 883 97
Baffle with centering ring (FPM)	-	-	Part No. 230 078
Connection accessories for metal seals or degassing room up to 150 °C			
Ultra sealing ring, aluminum (Set of 3)	Part No. 883 73	Part No. 883 75	Part No. 883 75
Outer support ring	Part No. 883 74	Part No. 883 76	Part No. 883 76
Clamping ring	Part No. 882 75	Part No. 882 77	Part No. 882 77
Oudering Information	DN 40 KE	DN 46 OF	DN 40 OF
Ordering Information	DN 40 KF	DN 16 CF	DN 40 CF
Outer centering ring with O-ring Aluminum / FPM (Viton)	Part No. 183 55	_	_
Fine filter on centering ring with O-ring Stainless steel / FPM (Viton)	Part No. 883 98	-	-
Baffle with centering ring (FPM)	Part No. 230 079	-	-
Connection accessories for metal seals or degassing room up to 150 °C			
Ultra sealing ring, aluminum (Set of 3)	Part No. 883 77	_	-
Outer support ring	Part No. 883 78	-	_
Clamping ring	Part No. 882 78	-	-
Connection accessories			
for CF connections			
Copper seals, (set of 10 pieces)	_	Part No. 839 41	Part No. 839 43
Screw (set of 25 pieces)	_	Part No. 839 40	Part No. 839 01

Products

Mechanical Gauges

Bourdon Vacuum Gauges


Advantages to the User

- Highly reliable, rugged, insensitive to vibrations
- Linear readout, independent of the type of gas
- Excellent media compatibility owing to the stainless steel movement (BOURDONVAC C)
- IP 54 protection (BOURDONVAC C)

Typical Applications

- Vacuum distillation
- Drying processes
- For explosion hazard applications
- Vacuum coneying systems

Rugged relative pressure vacuum gauges based on the Bourdon principle covering the pressure range from 1 to 1020 mbar (0.75 to 765 Torr).

Dimensional drawing for the BOURDONVAC A (top) and the BOURDONVAC C (bottom)

Technical Data

BOURDONVAC A

BOURDONVAC C

Measurement range	mbar	1 to 1020	1 to 1020
Measurement uncertainty	% FS	1	1
Overload range (abs. briefly)	bar	1.5	1.3
Storage temperature range	°C	-25 to +60	-25 to +60
Nominal temperature range	°C	10 to 60	10 to 100 (max.)
Flange connection	DN	16 KF	16 KF
Length of scale	mm	140	207
Diameter	mm	79	101
Overall weight	mm	105	135
Weight	kg (lbs)	0.25 (0.55)	0.6 (1.33)
Materials in contact with the med	lium	nickel plated standard steel, bronze, soft solder	stainless steel 1.4571

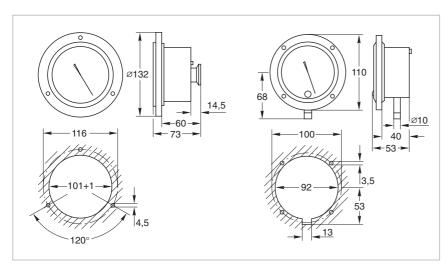
Ordering Information

BOURDONVAC A

BOURDONVAC C

Bourdon vacuum gauge	Part No. 160 40	Part No. 161 20	
----------------------	-----------------	-----------------	--

Capsule Vacuum Gauges


Rugged absolute pressure gauges for the pressure range from 1 to 1000 mbar (0.75 to 750 Torr).

Advantages to the User

- Rugged and insensitive to vibra-
- Models available for two measurement ranges (1 to 100 mbar and 1 to 1000 mbar)
- Readout independent of the type of gas and changes in atmospheric pressure
- Linear pressure readout
- Installation direct via the connection flange or panel mounting
- Model with integrated isolation valve for use on packaging machines (Part No. 160 68)

Typical Applications

- Measurement of absolute pressures (for inert gases only)
- Vacuum conveying systems
- Operation monitoring
- Packaging

Dimensional drawings and panel cut-outs for the capsule vacuum gauges Part Nos. 160 63/64 (left) and Part No. 160 68 (right)

Capsule Vacuum Gauges

mbar	1 to 100	1 to 100	1 to 1000
% FS	1.0	2.5	1.6
bar	1.5	1.5	1.5
°C	-25 to +60	-25 to +60	-25 to +60
°C	10 to 50	10 to 50	10 to 50
mm	205	180	205
cm ³	235	167	235
mm	132	110	132
g (lbs)	0.7 (1.54)	0.6 (1.32)	0.7 (1.54)
DN	16 KF	10 mm dia. hose nozzle with integrated isolation valve	16 KF
	45°	45°	45°
	brass standard steel nickel plated glass NBR aluminum copper beryllium soft and hard solder	brass standard steel nickel plated glass NBR aluminum copper beryllium soft and hard solder	brass standard steel nickel plated glass NBR aluminum copper beryllium soft and hard solder
	% FS bar °C °C mm cm³ mm	% FS 1.0 bar 1.5 °C -25 to +60 °C 10 to 50 mm 205 cm³ 235 mm 132 g (lbs) 0.7 (1.54) DN 16 KF 45° brass standard steel nickel plated glass NBR aluminum copper beryllium	% FS 1.0 2.5 bar 1.5 1.5 °C -25 to +60 -25 to +60 °C 10 to 50 10 to 50 mm 205 180 cm³ 235 167 mm 132 110 g (lbs) 0.7 (1.54) 0.6 (1.32) DN 16 KF 10 mm dia. hose nozzle with integrated isolation valve 45° 45° brass standard steel nickel plated glass NBR aluminum copper beryllium standard steel nickel plated glass NBR aluminum copper beryllium

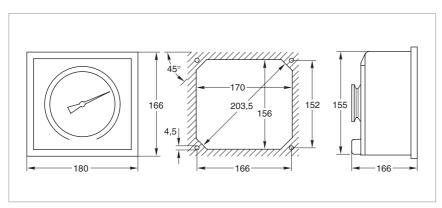
Ordering Information

Capsule Vacuum Gauges

Cansula vacuum gauga	Part No. 160 63	Part No. 160 68	Part No. 160 64
Capsule vacuum gauge	Part No. 160 63	Part No. 160 68	Part No. 160 64

Diaphragm Vacuum Gauge DIAVAC DV 1000

Rugged mechanical diaphragm vacuum gauge of high accuracy for the rough vacuum range from 1 to 1000 mbar (1 to 750 Torr).


Advantages to the User

- Wide measurement range from 1 to 1000 mbar (1 to 750 Torr) with high resolution in the range from 1 to 100 mbar (1 to 75 Torr)
- The scale of each gauge is individually calibrated
- Absolute pressure gauge
- Readout independent of the type of gas and changes in atmospheric pressure

- Stainless steel diaphragm for excellent compatibility with most media
- Laser welding technology for high precision diaphragm mount
- Rugged table-top housing, can be freely mounted above the flange connection; also for panel mounting
- Measurement chamber can be easily cleaned owing to the detachable measurement flange

Typical Applications

- Chemical processes
- Vacuum destillation
- Absolute pressure measurements for gas mixtures
- For use in explosion hazard rated
- Drying processes
- Lamp manufacture

Dimensional drawing and panel cut-out for the DIAVAC DV 1000

DIAVAC DV 1000

Measurement range mbar (Tor	1 to 1000 (1 to 750)
Measurement uncertainty	
1 - 10 mbar (1 - 7.5 Torr)	± 1 mbar (Torr)
10 - 1000 mbar (7.5 - 750 Torr)	± 10 % of meas. value
Storage temperature range	-25 to +60
Nominal temperature range	0 to 60
Permissible overload (abs.) ba	т 3
Lenght of scale / dead volume mr	n 270 / 130
Vacuum Connection D	40 KF
Dimension (W x H x D)	180 x 166 x 100
Weight kg (lbs	2.7 (5.95)
Materials in contact with the medium	stainless steel 1.4301, 1.4310 (diaphragm), FPM

Ordering Information

DIAVAC DV 1000

DIAVAC DV 1000	
DIAVAC DV 1000	D . N . 400 0T 1)
mbar readout	Part No. 160 67 1)
Torr readout	Part No. 896 06 ¹⁾
DKD calibration	Part No. 157 12
Replacement sintered filter	
with DN 40 KF centering ring	Part No. 231 93 515
Replacement housing, complete	Part No. 240 000

¹⁾ Complete with centering ring and sintered filter

Handheld Measuring Instruments

THERMOVAC Sensor TM 90

The THERMOVAC TM 90 is a simple handheld vacuum measuring instrument for occasional use. Its operation is based on the Pirani principle and covers a measurement range from 1 x 10⁻² mbar to atmospheric pressure. It is delivered in a rugged plastic

Advantages to the User

- Cordless power supply through a standard 9 V battery
- Large 3 1/2 digit 7 segment display
- Pressure unit of measurement selectable between mbar, Torr and Pascal

Typical Applications

- Pressure measurements on refrigerating and air-conditioning systems before filling in the refrigerant
- Pressure measurements during servicing assignments

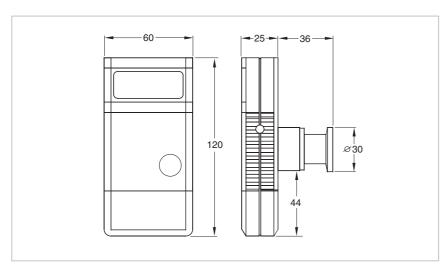
Weight (including battery) kg (lbs)	0.2 (0.44)
Power source	9 Volt battery (type 6 LR61)
Battery life h	< 5
Connection DN	16 KF or 25 KF
Controls	On/Off/Unit selector
Indicated units of measurement	mbar, microns, Pa
Measurement range	atm. to 1 x 10 ⁻² mbar
	(atm. to 1 Pa, atm. to 1 micron)
Automatic shutdown	after 15 minutes; last read out is displayed again after restarting
Reading accuracy mbar	< 2 ±5%, > 2 ±10%,
microns	< 20.000 ±5%, > 20.000 microns ±10%
Resolution	microns: in steps down to 1 micron
	Pascal: in steps down to 1 Pa
	mbar: in steps down to 0.01 mbar
Operating temperature °C	0 to 50
Storage temperature °C	-10 to +60
Maximum overpressure bar abs.	10

Ordering Information

TM 90

TM 90, DN 16 KF	Part No. 230 076
TM 90, DN 25 KF	Part No. 230 077

THERMOVAC Sensor TM 100


The handheld THERMOVAC TM 100 is capable of measuring pressures within the pressure range of 5 x 10⁻⁴ to 1200 mbar. By combining a piezoresistive pressure sensor for the upper and a Pirani sensor for the lower pressure range, the measurements made by the THERMOVAC TM 100 are independent of the type of gas above pressures of 15 mbar. Especially noteworthy is the exceptionally long battery life.

Advantages to the User

- Cordless power supply through a standard 9 V battery
- Large 4-digit 7-segment display
- Pressure unit of measurement selectable between mbar, Torr and Pascal
- Pressure measurements above 15 mbar are independent of the type of gas
- Protection category IP 40

Typical Applications

- Mobile pressure measurements of all kinds
- Pressure measurements on refrigerating and air-conditioning systems before filling in the refrigerant
- Pressure measurements during servicing of vacuum pumps
- Pressure measurements during the production of gas filled pressurised lamps, respectively refilling

Dimensional drawing for the THERMOVAC TM 100

Measurement principle	Piezo-resistive and thermal conductance Pirani (gas-type Independent)
Measurement range mbar	1200 to 5 x 10 ⁻⁴
Maximum overload bar abs.	2
Measurement uncertainty with reference to	
full-scale value (at 1200 - 10 mbar) %	0.4 (full-scale)
measured value (at 10 to 0.01 mbar) %	10 (full-scale)
Materials in contact with the vacuum	Stainless steel, gold, tungsten, nickel, glass, Viton
Measurement cycle s	1.6
Settling time ms	400
Operating temperature °C	+5 to +50 °C
Storage temperature °C	-20 to +60 °C
Supply voltage	Rechargeable 9 V battery (type 6LR61) or
	12 V AC adaptor (miniature jack, + terminal at the tip)
Power consumption, approx. mW	110 (clocked)
Operating duration	
Li battery h	< 100
6 LR61 alkaline h	< 40
Display	LCD 12 mm
Connection DN	16 KF
Dimensions (without flange) mm	60 x 120 x 25
Protection class IP	40
Weight (including battery) kg (lbs)	0.23 (0.51)

Ordering Information

TM 100

TM 100, DN 16 KF	Part No. 230 080
------------------	------------------

Active Sensors

CERAVAC Transmitters CTR 100 / CTR 91

The CERAVAC Transmitter with its diaphragm made of pure aluminium oxide ceramics offers excellent accuracy and reproducibility.

Advantages to the User

- Excellent accuracy
- Corrosion resistant
- High resolution
- Very good temperature stability
- Electrically and mechanically compatible with the conventional capacitance manometers with stainless steel diaphragm
- Heated and unheated types are available

The Ceramics Diaphragm

The stiffness of aluminium oxide ceramics is greater than that of metal so that the ceramics material offer improved long term stability characteristics when exposed to frequent pressure changes or overpressures. The aluminium oxide ceramics diaphragm of the CERAVAC sensors is capable of returning precisely to its initial position with respect to a certain pressure so that the measurements will be highly reproducible.

Typical Applications

- General pressure measurements in the fine and rough vacuum range, also for corrosive process gases
- Chemical process engineering
- Semiconductor production processes
- Suited as a reference sensor for monitoring test instruments in accordance with DIN/ISO 9000

Since the diaphragm is not impaired by overpressures or frequent pressure changes, no blocking valves will be required - a significant contribution towards reducing costs.

Moreover, aluminium oxide ceramics diaphragms return faster to their initial position compared to metal diaphragms; the time need between the processes for the measurement to stabilise is reduced. This is particularly important in the case of measurements close to Zero where metal

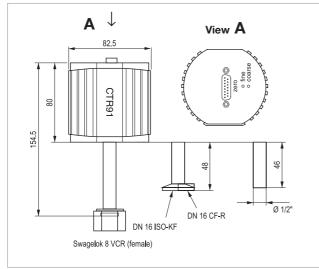
diaphragms take several minutes to return to their rest position.

Whereas metal diaphragms suffer from residual tensions and unavoidable irregularities due to their production process, diaphragms made of aluminium oxide ceramics are exceptionally homogeneous, and owing to the firing process at 2500 °C entirely free of tensions. This considerably reduces part to part variations in the sensors.

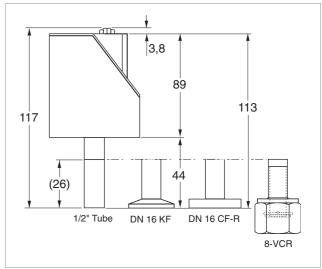
CTR 100

(Temperature Compensated)

		(Temperature	emperature Compensateu)	
Full Scale (FS) / Measurement range		1 Torr / 1 x 10 ⁻⁴ - 1 Torr	10 Torr / 1 x 10 ⁻³ - 10 Torr	
			10 Torr / 0.01 - 100 Torr	
		D	10 Torr / 0.1 - 1000 Torr	
		Pressure Units:	Pressure Units:	
		1 Torr = 1.33 mbar = 133 Pascal	1 Torr = 1.33 mbar = 133 Pascal	
Materials exposed to gases		ceramic (Al ₂ O ₃), stainless steel 316, Vacon 70	ceramic (Al ₂ O ₃), stainless steel 316, Vacon 70	
Max. overrange pressure		2000 Torr for 1/10/100 Torr sensors,	2000 Torr for 1/10/100 Torr sensors,	
		3000 Torr for 1000 Torr sensors	3000 Torr for 1000 Torr sensors	
Measurement uncertainty		0.2% of reading ± temperature effect	0.2% of reading ± temperature effect	
Resolution		0.003% of FS for 0.1/1 Torr sensors	0.003% of FS for 10/100/1000 Torr sensors	
Temperature effects				
Zero coefficient %	%/°C	0.015 of Full scale	0.005 of Full scale	
Span coefficient %	%/°C	0.01 of reading	0.01 of reading	
Response time	ms	≤ 30	≤ 30	
Nominal temperatur range	°C	5 to 50	5 to 50	
Supply voltage V	DC	+ 14 to + 30	+ 14 to + 30	
Power consumption	W	≤ 1.6	≤ 1.6	
Signal Output	٧	0 - 10; linear	0 - 10; linear	
Weight approx. kg ((lbs)	0.26 (0.57)	0.26 (0.57)	
Dead Volume	cm ³	6	6	
Connection cable		see section	see section	
		"Connection Cable for active Sensors"	"Connection Cable for active Sensors"	
Calibration		see section "Miscellaneous", para.	see section "Miscellaneous", para.	
		"Oerlikon Leybold Vacuum Calibration Service"	"Oerlikon Leybold Vacuum Calibration Service"	


CTR 91 (45 °C heated)

Full Scale (FS) / Measurement range	0.1 Torr / 1 x 10 ⁻⁵ - 0.1 Torr	1 Torr / 1 x 10 ⁻⁴ - 1 Torr 10 Torr / 1 x 10 ⁻³ - 10 Torr 100 Torr / 0.01 - 100 Torr 1000 Torr / 0.1 - 1000 Torr
	Pressure Units:	Pressure Units:
	1 Torr = 1.33 mbar = 133 Pascal	1 Torr = 1.33 mbar = 133 Pascal
Materials exposed to gases	ceramic (Al ₂ O ₃), stainless steel 316, Vacon 70	ceramic (Al ₂ O ₃), stainless steel 316, Vacon 70
Max. overrange pressure	1000 Torr for 0.1 Torr sensors	2000 Torr for 1/10/100 Torr sensors, 3000 Torr for 1000 Torr sensors
Measurement uncertainty	0.2% of reading ± temperature effect	0.15% of reading ± temperature effect
Resolution	0.0025% of FS for 0.1 Torr sensors	0.0025% of FS for 1 Torr sensors 0.0015% of FS for 10/100/1000 Torr sensors
Temperature effects Zero coefficient %/°C		1/10/100/1000 Torr sensor
Span coefficient %/°C	0.000 of Full Sould	0.0025 of Full scale 0.01 of reading
Reaction time ms	≤ 30	≤ 30
Nominal temperatur range °C	15 to 40	15 to 40
Supply voltage V D0	either ± 15 or + 24	either ± 15 or + 24
Power consumption V	≤ 19	≤ 19
Signal Output	0 - 10; linear	0 - 10; linear
Weight approx. kg (lbs	0.6 (1.32)	0.6 (1.32)
Dead Volume cm	6	7
Connection cable	see section "Connection Cable for active Sensors"	see section "Connection Cable for active Sensors"
Calibration	see section "Miscellaneous", para. "Oerlikon Leybold Vacuum Calibration Service"	see section "Miscellaneous", para. "Oerlikon Leybold Vacuum Calibration Service"


Ordering Information

CERAVAC

	CTR 91	CTR 100
DN 16 ISO-KF		
1000 Torr	Part No. 159 25	Part No. 230 300
100 Torr	Part No. 159 26	Part No. 230 301
10 Torr	Part No. 159 27	Part No. 230 302
1 Torr	Part No. 159 28	Part No. 230 303
0.1 Torr	Part No. 159 29	-
DN 16 CF-R		
1000 Torr	Part No. 159 31	Part No. 230 305
100 Torr	Part No. 159 32	Part No. 230 306
10 Torr	Part No. 159 33	Part No. 230 307
1 Torr	Part No. 159 34	Part No. 230 308
Cajon 8-VCR		
1000 Torr	Part No. 159 41	Part No. 230 310
100 Torr	Part No. 159 42	Part No. 230 311
10 Torr	Part No. 159 43	Part No. 230 312
1 Torr	Part No. 159 44	Part No. 230 313
1/2" tube		
1000 Torr	Part No. 159 51	Part No. 230 315
100 Torr	Part No. 159 52	Part No. 230 316
10 Torr	Part No. 159 53	Part No. 230 317
1 Torr	Part No. 159 54	Part No. 230 318

Dimensional drawing for the CERAVAC Transmitter CTR 91

Dimensional drawing for the CERAVAC Transmitter CTR 100

THERMOVAC Transmitters TTR 91 / TTR 91 S / TTR 96 S

THERMOVAC transmitters are active sensors (pressure to voltage converters) using thermal conductivity according to Pirani.

The further developed THERMOVAC transmitters have optimized price-toperformance ratio.

The value of the trigger point can be switched easily on the analog output and be shown on the display of the operating unit.

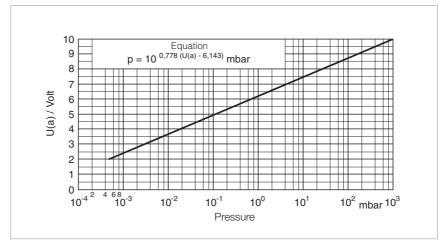
Advantages to the User

- Rugged sensing cells made of stainless steel
- Compact design
- Stable measurements within a wide temperature range
- Highly resistant to overpressures
- Exchangeable sensing cells
- Fast response
- Available with integrated switching relay (TTR 91 S, TTR 96 S)

_33 JN 16 ISO-KF 115 DN 16 CF-R

Dimensional drawing for the TTR 91 / TTR 91 S / TTR 96 S

Typical Applications


- Analytical engineering
- Safety circuits in vacuum systems
- Controlling ionization gauges
- General pressure measurement and control on systems in the fine and rough vacuum range

Sensor

The THERMOVAC transmitter has a Pirani sensing cell equipped with a tungsten (TTR 91/TTR 91 S) or nickel (TTR 96 S) filament.

If required, the sensing cells can easily be aligned to any precisely known pressure value (atmospheric, "zero", reference pressure) by pressing a button.

Integration of the transmitters in programmable control systems is facilitated by the linear characteristic, which can be defined by entering a simple equation into the computer. The transmitters TTR 91 / TTR 91 S / TTR 96 S are compatible to older TTR models like TTR 211, TTR 216 S or TTR 90. Built-in relays allow switching functions to be performed directly by the transmitter, without the need of a programmable control.

Characteristic of the THERMOVAC Transmitters

TTR Transmitter

TTR 91 / TTR 91 S / TTR 96 S

	1111017111101071111000
Measurement range mbar (Torr)	5 x 10 ⁻⁴ to 1000 (3.75 x 10 ⁻⁴ to 750)
Measurement uncertainty	15 % in the range 1 x 10^{-3} to 100 mbar (0.75 x 10^{-3} to 75 Torr)
Principle of measurement	Thermal conductivity according to Pirani
Supply voltage	14 to 30 V DC Hum voltage ≤ 1 V _{pp}
Power consumption VA	≤ 1
Storage temperature range °C	-20 to +65
Nominal temperature range °C	5 to 60
Max. rel. humidity % n.c.	≤ 80
Protection class	IP 40
Weight, approx., for DN 16 KF kg (lbs)	0.08 (0.18)
Sensor	Exchangeable sensing cell
Degassing temperature, max. °C	80 (250 with long tube)
Dead volume, approx. cm ³	2 (10 with long tube)
Materials in contact with the medium - filament	Stainless steel, Ni, glass, NiFe Tungsten (TTR 91, TTR 91 S) or nickel (TTR 96 S)
Over-pressure rating, abs. bar	10
Signal output ($R_a > 10 \text{ k}\Omega$) Measurement signal Status signal	0 to 10.3 V DC 1.9 to 10 V DC, corresp. 5×10^{-4} to 1×10^{3} mbar 1.286 V/decade, logarithmic Error: ≤ 0.5 V
Trigger (only TTR 91 S / TTR 96 S) Adjustment range mbar (Torr) Hysteresis Rating Error status	Normally open relay contact 2 x 10 ⁻³ to 500 (1.5 x 10 ⁻³ to 375) 10 % 30 V, 0.5 A DC, floating Relay contact open
Status indicators (only TTR 91 S / TTR 96 S)	Trigger (active): Green LED
Electrical connection	FCC-68/RJ45 socket, 8 way with shield
Cable length, max.	100

Ordering Information

TTR Transmitter

TTR 91 / TTR 91 S / TTR 96 S

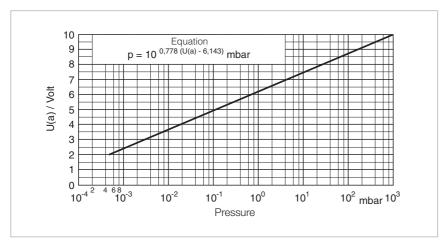
Without switching threshold	
TTR 91, DN 16 KF	Part No. 230 035
TTR 91, 1/8" NPT	Part No. 230 038
TTR 91, DN 16 CF	Part No. 230 036
TTR 91, 1/2" Tube, DN 16 CF	Part No. 230 037
With switching threshold	
TTR 91 S, DN 16 KF	Part No. 230 040
TTR 91 S, 1/8" NPT	Part No. 230 043
TTR 91 S, DN 16 CF	Part No. 230 041
TTR 91 S, 1/2" Tube, DN 16 CF	Part No. 230 042
TTR 96 S, DN 16 KF	Part No. 230 045
TTR 96 S, 1/8" NPT	Part No. 230 048
TTR 96 S, DN 16 CF	Part No. 230 046
TTR 96 S, 1/2" Tube, DN 16 CF	Part No. 230 047
Replacement sensing cell	
for TTR 91 / TTR 91 S	
DN 16 KF	Part No. 230 050
1/8" NPT	Part No. 230 053
DN 16 CF	Part No. 230 051
1/2" Tube, DN 16 CF	Part No. 230 052
for TTR 96 S	
DN 16 KF	Part No. 230 055
1/8" NPT	Part No. 230 058
DN 16 CF	Part No. 230 056
1/2" Tube, DN 16 CF	Part No. 230 057
Calibration	see section "Miscellaneous", para. "Oerlikon Leybold Vacuum Calibration Service"
Connection cable, FCC 68 on both ends,	
8 way, shielded	Туре А
5 m	Part No. 124 26
10 m	Part No. 230 012
15 m	Part No. 124 27
20 m	Part No. 124 28
30 m	Part No. 124 29
40 m	Part No. 124 30
50 m	Part No. 124 31
75 m	Part No. 124 32
100 m	Part No. 124 33

Notes	

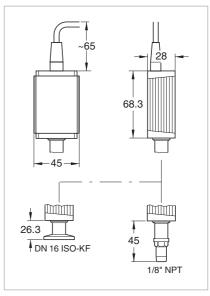
THERMOVAC Transmitters TTR 100 / TTR 100 S2

The Pirani Capacitance Diaphragm Gauge is the first vacuum gauge which combines ceramic capacitance diaphragm and thermal conductivity technologies. Unlike standard heat transfer technology, the Oerlikon Leybold Vacuum TTR 100 offers superior accuracy and gas-type-independent readings between 100 mbar and 1500 mbar.

Advantages to the User


- Wide measurement range from 5 x 10⁻⁴ to 1500 mbar
- Gas-type-independent pressure measurement between 100 mbar and 1500 mbar
- Available with up to two integrated relays (TTR 100 S2)
- Mounts in any orientation
- 0 to 10.3 V analog output for easy system integration
- Compact design
- Flow independent
- Rapid cycling
- Follows true pressure in pump and vent

Typical Applications


- Loadlock control
- Forevacuum pressure monitoring
- Safety circuits in vacuum systems
- General measurement and control in the medium and rough vacuum range
- Control of high vacuum ionization gauges

Option

Dust and other particles may cause increasing measurement errors and reduced lifetime. Therefore we recommend the installation of a fine filter in critical applications. Fine filters are listed in section "General", para. "Connection Accessories for Small Flanges".

Characteristic of the THERMOVAC Transmitters

Dimensional drawing for the TTR 100

TTR Transmitter

TTR 100 / TTR 100 S2

Measurement principle	Thermal conductance according to Pirani combined with capacitance diaphragm
Measurement range	mornal conductance according to this in combined with capacitance diaprilagin
(air, O ₂ , CO, N ₂) mbar (Torr)	5 x 10 ⁻⁴ to 1500 (3.8 x 10 ⁻⁴ to 1125)
Accuracy	450/ 6 "
1 x 10 ⁻³ to 50 mbar	±15% of reading
50 to 950 mbar	±5% of reading
ATM (atmospheric pressure)	±2.5% of reading
Repeatability	±2% of reading
Trigger (only TTR 100 S2)	2
Setting range with potentiometer	1.5 x 10 ⁻³ to 1400 mbar
Relay contacts	N.O. / potential free
closed	at low pressure (lamp lit)
open	at high pressure or no supply (lamp off)
Hysteresis	10% of threshold
Contact rating	30 V DC / 1 A
Relay status	active: LED, green
Output signal analog	0 to 10.3 V
Measurement range	+1.9 to +10.23 V
Voltage vs. pressure	1.286 V / decade, logarithmic
Output impedance	2 x 4.7 Ohm, short circuit-proof
Minimum load impedance	10 kOhm
Response time	10 ms
Power supply	
Voltage (ripple ≤1 V _{pp})	+15 to +30 V DC
Consumption, max.	2.5 W
Fuse to be connected	1 AT (slow)
Electrical connection	FCC-68, 8 way with shield
Cable length, max. m (ft)	100 (330)
Materials exposed to vacuum	
(process media)	
Vacuum connection	stainless steel
Pirani filament	tungsten
Capacitance sensor cell	Al_2O_3
Feedthrough	glass
Other materials	Ni, Cu, NiFe, SnAg, AgPd
Internal volume DN 16 ISO-KF cm ³ (inch ³)	6 (0.07)
1/8" NPT cm ³ (inch ³)	6 (0.37)
	8 (0.49)
Over-pressure rating, abs. bar	5
Temperature	401 50
Operation (ambient) °C	+10 to +50
Storage °C	-20 to +65
Bakeout at flange, max. °C Filament temperature °C	+80 < 160
Relative humidity	< 80 % at temperatures < +31 °C, decreasing to 50% at +40 °C
Mounting orientation any	
	any
Use	Indoors only,
	altitudes up to 2000 m NN
Protection class IP	40
Weight	
DN 16 ISO-KF kg (lbs)	0.09 (0.20)
1/8" NPT kg (lbs)	0.09 (0.20)

Ordering Information

TTR Transmitter

TTR 100 / TTR 100 S2

Without switching threshold TTR 100, DN 16 KF	Part No. 230 026	
TTR 100, 1/8" NPT	Part No. 230 028	
With switching threshold		
TTR 100 S2, DN 16 KF	Part No. 230 027	
TTR 100 S2, 1/8" NPT	Part No. 230 029	
Calibration	see section "Miscellaneous",para. "Oerlikon Leybold Vacuum Calibration Service"	
Connection cable, FCC 68 on both ends,		
8 way, shielded	Type A	
5 m	Part No. 124 26	
10 m	Part No. 230 012	
15 m	Part No. 124 27	
20 m	Part No. 124 28	
30 m	Part No. 124 29	
40 m	Part No. 124 30	
50 m	Part No. 124 31	
75 m	Part No. 124 32	
100 m	Part No. 124 33	

Notes	

PENNINGVAC Transmitters PTR 225 / PTR 225 S / PTR 237

Advantages to the User

- All-metal cold cathode sensors (inverted Penning)
- High reproducibility
- Good ignition characteristics through the optimized design for the electrodes
- Low tendency for contamination (also during argon operation) due to high voltage reduction after ignition of the plasma and due to the titanium cathodes
- Switching threshold adjustable over a wide range (1 x 10⁻⁹ to 1×10^{-2} mbar (0.75 x 10^{-9} to 0.75×10^{-2} Torr)) and with a loadbearing relay contact (PTR 225 S)
- Low stray magnetic field
- High EMI compatibility through screened housing, FCC-68 connector and cables
- LED indicator for operation
- Logarithmic signal output (algrithm supplied)
- Intelligent interface
- CE mark
- High resistance against sputtering due to titanium cathode plates

Typical Applications

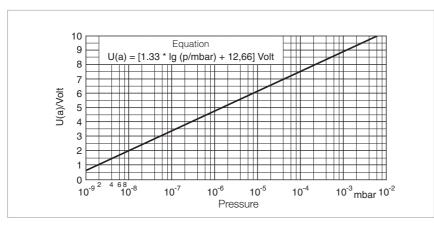
- Evaporation and sputtering systems
- Analytical engineering
- Vacuum furnaces
- High vacuum systems
- General pressure measurement and control on systems in the fine and rough vacuum range which have the following requirements:
 - Immediate data transfer to a programmable control/computer via analog interface
 - Coverage of greater distances between the point of the measurement and processing location
 - Several locations which are to be monitored continuously
 - Low voltage supply
 - Simple, cost and space saving installation
 - Increased reliability, also in argon processes (sputtering)
 - Simple operation
 - Increased requirements concerning electromagnetic compatibility (EMI)

The PENNINGVAC transmitters have been developed especially for integration in programmable control systems. As active sensors (pressure to voltage converters) - equipped with a rugged cold cathode sensing cell and with matched operating and processing electronics - these transmitters offer a wide measurement range of 1 x 10⁻⁹ to 1×10^{-2} mbar (0.75 x 10^{-9} to 0.75×10^{-2} Torr). The measurement signal may be transmitted over long distances without problems.

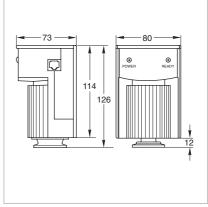
Option

For protection of the sensors PTR 225 against contamination, radiation and other disturbing factors the installation of a baffle is recommended.

Sensor


Cold cathode sensors - based on the well-proven principle of the inverted Penning - are built into the PENNINGVAC transmitters PTR 225/225 S/237 which have a DN 25 KF or DN 40 CF flange. The housing of the transmitter, including its electronics, as well as the magnet can easily be removed for degassing of the all-metal sensor with ${\rm Al_2O_3}$ current feed-

through. The design of the Penning sensors with its closed magnetic field causes a negligible stray field. Thus the PTR 225/225 S/237 may also be installed close to sensitive parts within a system.


The anode ring and the titanium cathode plates can be exchanged easily for quick maintenance of the sensors in case of contamination. The shape of the cathode plates is such that they also act as a baffle for the sensors.

Integration of the transmitter in programmable control systems is facilitated by the linear characteristic which can be defined by entering a simple equation into the computer.

Built-in relays (PTR 225 S) allow switching functions to be performed directly by the transmitter, without the need of a programmable control.

Characteristic of the PTR 225/225 S/237

Dimensional drawing for the PTR 225/225 S/237

PTR Transmitter

PTR 225 / PTR 225 S / PTR 237

		PIR 225 / PIR 225 \$ / PIR 23 /
Display range	mbar (Torr)	1 x 10 ⁻⁹ to 1 x 10 ⁻² (0.75 x 10 ⁻⁹ to 0.75 x 10 ⁻²)
Measurement uncertainty		30 % in the range 1 x 10 ⁻⁸ to 1 x 10 ⁻⁴ mbar (0.75 x 10 ⁻⁸ to 0.75 x 10 ⁻⁴ Torr)
Principle of measurement		Cold cathode ionization according to Penning
Supply voltage		14.5 to 36 V DC typ. 24 V DC hum voltage < 2 Vpp
Power consumption	VA	< 2
Storage temperature range	°C	-20 to +70
Nominal temperature range	°C	10 to 50
Max. rel. humidity (climatic class F)	% n.c.	95
Protection class	IP	40
Dimensions (H x W x D)	mm	125 x 80 x 73
Weight, approx.	kg (lbs)	0.5 (1.1)
Inflammability		UL 94 - V 2
Sensor		Detachable for cleaning
Vacuum connection	DN	25 KF or 40 CF
Degassing temperature, max.	°C	250 with electronics detached
Dead volume, max.	cm ³	21
Materials in contact with the m	edium	Stainless steel, CrNi, Al ₂ O ₃ ceramics, NiFe, Mo, Cu, Ni, titanium
Over-pressure rating (abs.)	bar	10
Signal output ($R_a > 10 \text{ k}\Omega$) Measurement signal		0 to 10.6 V 0.66 to 10 V, corresponds to 1 x 10^{-9} to 1 x 10^{-2} mbar logarithm. divisions 1.333 V/decade
Trigger (PTR 225 S) Adjustment range Hysteresis Rating Error status	mbar (Torr)	Changeover relay contact 1×10^{-9} to 1×10^{-9} to 1×10^{-3} (0.75 $\times 10^{-9}$ to 0.75 $\times 10^{-3}$) About 30 % of the adjusted pressure 60 V, 0.5 A DC Contact in its rest position when "no ignition" / "HT off"
High voltage control input		ON: At U $<$ 2.9 V, or U $>$ 12 V OFF: At U $>$ 3 V, or U $<$ 7 V
Status output Ready to measure Error (no ignition)		Voltage level HIGH (typ. 24 V DC) LOW (0 V)
Status indicators		Operation: Orange LED Ready to measure (ignited): Green LED Trigger (active): Green LED
Monitor output ($R_a > 100 \text{ k}\Omega$)		Jack socket (3.5 mm) at which the trigger setting is available
Electrical connection		FCC-68 socket, 8 way with shield
Cable length, max.	m	100
Interface PTR 225 PB PTR 237 D		Profibus DP DeviceNet

Ordering Information

PTR Transmitter

PTR 225 / PTR 225 S / PTR 237

PTR 225, DN 25 KF	Part No. 157 34
PTR 225 S, DN 25 KF	Part No. 164 34
PTR 225 PB, DN 25 KF	Part No. 896 41
Profibus interface	
PTR 237, DN 40 CF	Part No. 157 36
PTR 237 D, DN 40 CF	Part No. 896 42
DeviceNet interface	
Baffle, DN 25 KF, with centering ring	Part No. 230 078
Replacement cathode plates, titanium	Part No. 162 91
(set of 5 pieces)	
Replacement anode ring	Part No. 240 002
Calibration	see section "Miscellaneous", para. "Oerlikon Leybold Vacuum Calibration Service"
Connection cable, FCC 68 on both ends,	
8 way, shielded	Type A
5 m	Part No. 124 26
10 m	Part No. 230 012
15 m	Part No. 124 27
20 m	Part No. 124 28
30 m	Part No. 124 29
40 m	Part No. 124 30
50 m	Part No. 124 31
	—
75 m	Part No. 124 32 Part No. 124 33

PENNINGVAC Transmitter PTR 90

The PENNINGVAC transmitter combines the cold cathode ionization principle with the Pirani principle. This allows for complete coverage of the pressure range from 5 x 10⁻⁹ mbar to atmospheric pressure by a single transmitter. The cold cathode system is ignited directly through switching on the internal high-voltage at the optimum ignition pressure.

Advantages to the User

- High operational reliability through automatic ignition of the cold catho-
- Low complexity for installation and wiring due to the integration of two principles of measurement in a single casing
- Compact design
- Good serviceability
- Extra low voltage power supply
- Simple, cost and space saving installation
- Increased reliability also in connection with argon processes (sputtering)
- Simple to operate
- CE mark

Typical Applications

- Sputtering and coating technology
- Analytical technology
- Vacuum furnaces
- Multipurpose pressure measurement and control in the medium and high vacuum range

Options

In order to protect the PTR sensors against contamination, heat radiation and other detrimental influences, fitting of a baffle is recommended.

PENNINGVAC Transmitter PTR 90

Display range	mbar (Torr)	5 x 10 ⁻⁹ 1000 (3.75 x 10 ⁻⁹ 750)
Measrement uncertainty	%	30 in the range 1 x 10 ⁻⁸ 100 mbar (in the range 0.75 x 10 ⁻⁸ 75 Torr)
Principle of measurement		Cold cathode measurement system based on the principle of the inverted magnetron and Pirani measurement system
Reproducibility	%	5 in the range 1 x 10^{-8} 100 mbar (in the range 0.75 x 10^{-8} 75 Torr)
Output signal (measurement Voltage range Measurement range Relationship voltage-pres Error signal		0 - 10.5 1.828.6 Logarithmic, 0.6 V/decade < 0.5 V no power supply > 9.5 V Pirani sensor is defective (broken filament)
Power supply	V DC	15 - 30
Electrical connection		FCC 68 socket, 8 way
Operating temperature	°C	5 to 55
Storage temperature	°C	-40 to +65
Materials in contact with the	e medium	Stainless steel, ceramics, Mo, Ni, Au, W
Overpressure resistance (ab	solute) bar	10
Protection class	IP	40

Ordering Information

PTR Transmitter

PTR 90, DN 25 KF	Part No. 230 070
PTR 90, DN 40 KF	Part No. 230 071
PTR 90, DN 40 CF	Part No. 230 072
Calibration	see section "Miscellaneous", para. "Oerlikon Leybold Vacuum Calibration Service"
Connection cable, FCC 68 on both ends,	
8 way, shielded	Туре А
5 m	Part No. 124 26
10 m	Part No. 230 012
15 m	Part No. 124 27
20 m	Part No. 124 28
30 m	Part No. 124 29
40 m	Part No. 124 30
50 m	Part No. 124 31
75 m	Part No. 124 32
100 m	Part No. 124 33

IONIVAC Transmitter ITR 90

The ITR 90 is a optimized combination transmitter. The combination of a hot cathode ionisation sensor according to Bayard-Alpert and a Pirani sensor permits vacuum pressure measurements of nonignitable gases and gas mixtures in the pressure range from 5×10^{-10} to

If needed, the pressure can be displayed via the integrated display.

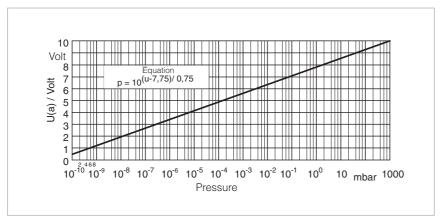
Advantages to the User

- Continuous pressure measurements from 10⁻¹⁰ mbar to atmospheric pressure
- High degree of reproducibility within the typical range for process pressures of 10⁻² to 10⁻⁸ mbar
- Controlled switching on and off sequencing through the integrated double Pirani optimises the service life of the yttrium coated iridium cathodes
- Compact design
- Enclosed, rugged electrode geometry in a rugged metal housing
- Efficient degassing by electron bombardment
- Simple fitting of the sensor
- Extension for higher degassing temperatures during the measurements
- One signal covering 13 decades
- One flange joint for 13 decade
- ITR 90 model with built-in display for stand-alone operation without additional display components
- RS 232 C interface

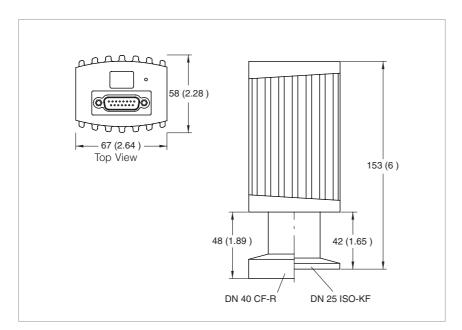
Typical Applications

- Analytical
- Evaporation and coating
- Vacuum furnaces
- General purpose pressure measurements in the fine and high vacuum ranges

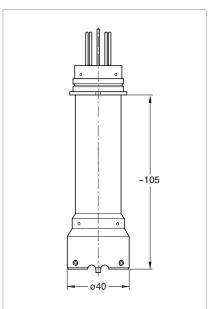
Option


For protection of the sensor ITR 90 against contamination, radiation and other disturbing factors the installation of a baffle is recommended.

Two types of baffles are available: A build-in version for CF connections is mounted in the sensor; the baffle for KF connections is integrated in a centering ring.


Sensor

The sensor of the ITR 90 contains a dual filament Pirani system as well as a Bayard-Alpert measurement system.


When using the degassing extension, measurements will be possible also at flange temperatures up to 150 $^{\circ}\text{C}$

Characteristic of the ITR 90

Dimensional drawing for the ITR 90; dimensions in brackets () are in inch

Dimensional drawing for the degassing extension

ITR Transmitter

ITR 90

1111 90		1111 30	
Display range m	bar (Torr)	5 x 10 ⁻¹⁰ to 1000 (3.75 x 10 ⁻¹⁰ to 750)	
Measurement uncertainty, 10 ⁻⁸ - 10 ⁻² mbar		15 % of the meas. value	
Reproducibility, 10 ⁻⁸ - 10 ⁻² mbar		5 % of the meas. value	
Principles of measurement		Hot cathode ionization according to Bayard-Alpert	
		combined with thermal conductivity according to Pirani	
Degas		Electron bombardment 3 minutes, max.	
Supply voltage		20 to 28 V DC, typ. 24 V DC	
Power consumption, max.	w	16	
Storage / nominal temperature range	je °C	-20 to +70 / 0 to +50	
Protection class		IP 30	
Weight, approx.			
ITR 90, DN 25 KF	kg (lbs)	0.285 (0.64)	
ITR 90, DN 40 CF	kg (lbs)	0.550 (1.24)	
Sensor		Fully sealed, exchangeable	
Degassing temperature, max.	°C	150 ¹⁾	
Dead volume, max.	cm ³	24 at DN 25 KF	
		34 at DN 40 CF	
Materials in contact with the mediu	m	Cu, W, Glas, NiFe, Mo, stainless steel, Aluminum, Iridium, Yttrium, NiCr,	
Over-pressure rating (abs.)	bar	2	
Signal output ($R_a \ge 10 \text{ k}\Omega$)			
Measurement signal		0 - 10 V, 0.774 - 10 V, 0.75 V pro decade	
Error signal		< 0,5 V	
Interface (standard / optional)		RS 232 C / ProfiBus	
Electrical connection		15 way Sub-D male connector / pin contacts	
Cable length, max.	m	100 / 30 at RS 232 C	

¹⁾ Flange temperature when using the degassing extension

Ordering Information

ITR TransmitterITR 90

	Without Display	With Display
ITR 90, DN 25 KF	Part No. 120 90	Part No. 120 91
ITR 90, DN 25 KF	Part No. 230 030	-
Profibus interface		
ITR 90, DN 40 CF-R, rotatable CF flange	Part No. 120 92	Part No. 120 94
ITR 90, DN 40 CF-R, rotatable CF flange	Part No. 230 031	_
Profibus interface		
Options		
Power supply for IONIVAC transmitter		
100 V - 240 V AC / 24 V DC		
incl. 5 m connection cable and		
5 m RS 232 C cable	Part No. 121 06	Part No. 121 06
Degassing extension (100 mm, approx.)	Part No. 127 06	Part No. 127 06
Baffle, DN 25 KF,		
with centering ring (FPM)	Part No. 230 078	Part No. 230 078
Installation baffle for CF variant	Part No. 121 07	Part No. 121 07
Replacement sensor		
IE 90, DN 25 KF ¹⁾	Part No. 121 02	Part No. 121 02
IE 90, DN 40 CF-R ¹⁾	Part No. 121 03	Part No. 121 03
Calibration	see section "Miscellaneous", para.	see section "Miscellaneous", para.
	"Oerlikon Leybold Vacuum Calibration Service"	"Oerlikon Leybold Vacuum Calibration Service"
Connection cable	see section	see section
	"Connection Cable for active Sensors"	"Connection Cable for active Sensors"

¹⁾ including hex. socket screw key

IONIVAC Transmitter ITR 200 S

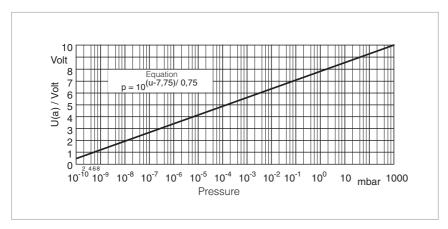
The ITR 200 S is an optimised dual cathode combination transmitter on the basis of the well proven ITR 90. The combination of a hot cathode ionization sensor according to Bayard-Alpert and a Pirani sensor allows vacuum pressure measurements of non-ignitable gases and gas mixtures in the pressure range from 5 x 10⁻¹⁰ to 1000 mbar.

Upon request, the pressure can be displayed on an integrated display.

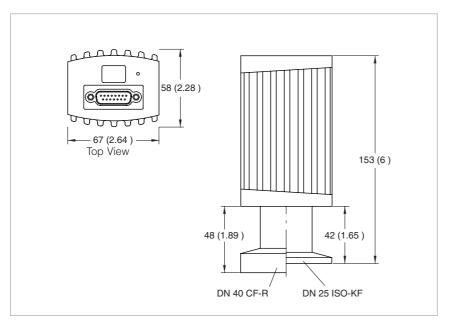
Advantages to the User

- Service life increase and increased operational reliability through integration of a second hot cathode
- Full coverage of the pressure range from 5 x 10⁻¹⁰ mbar to atmospheric pressure
- High repeatability within the typical process pressure range of 10⁻² to 10⁻⁸ mbar
- Controlled switching on and switching off through the integrated dual Pirani optimises the service life of the yttrium-coated iridium cathodes
- Compact design
- Enclosed, stable electrode geometry in rugged metal casing
- Efficient degassing through electron bombardment
- Simple to install
- Extension for higher degassing temperatures in the measurement mode
- ITR 200 S version with built-in display allows for stand-alone operation without the necessity for additional displays
- RS 232 C interface

Typical Applications


- Analytical engineering
- Sputtering and coating technology
- Vacuum furnaces
- Multipurpose pressure measurement in the medium and high vacuum range

Options


Upon request, the ITR 200 S can be supplied with an integrated display, a Profibus or a DeviceNet interface.

Sensor

The sensor of the ITR 200 S includes besides the Pirani system a dual cathode measurement system according to Bayard-Alpert. If one of the hot cathodes should burn out during operation, then the second cathode is automatically switched on. Moreover, each sensor contains a memory chip with the relevant system data. Thus after having exchanged a sensor, an automatic alignment is performed between sensor and operating electronics (plug and play).

Characteristic of the ITR 200

Dimensional drawing for the ITR 200; dimensions in brackets () are in inch

IONIVAC Transmitter ITR 200 S

Display range mbar (To	77) 5 x 10 ⁻¹⁰ to 1000 (3.75 x 10 ⁻¹⁰ to 750)
Measurement uncertainty, 10-8 - 10-2 mbar15 % of the meas. valueReproducibility, 10-8 - 10-2 mbar5 % of the meas. value	
Principles of measurement	Hot cathode ionization according to Bayard-Alpert combined with thermal conductivity according to Pirani
Degas	Electron bombardment 3 minutes, max.
Supply voltage	20 to 28 V DC, typ. 24 V DC
Power consumption, max.	W 16
Storage / nominal temperature range	-20 to +70 / 0 to +50
Protection class	IP 30
Weight, approx. ITR 90, DN 25 KF kg (III ITR 90, DN 40 CF kg (III	
Sensor Fully sealed, exchangeable	
Degassing temperature, max.	°C 150 ¹⁾
Dead volume, max.	24 at DN 25 KF 34 at DN 40 CF
Materials in contact with the medium	Cu, W, Glas, NiFe, Mo, stainless steel, Aluminum, Iridium, Yttrium, NiCr,
Over-pressure rating (abs.)	ar 2
Signal output ($R_a \ge 10 \text{ k}\Omega$) Measurement signal Error signal	0 - 10 V, 0.774 - 10 V, 0.75 V pro decade < 0,5 V
Interface (standard / optional)	RS 232 C / Profibus or DeviceNet
Switching function Standard Profibus or DeviceNet	1 normally open contact 2 normally open contacts
Electrical connection	15 way Sub-D male connector / pin contacts
Cable length, max.	m 100 / 30 at RS 232 C

¹⁾ Flange temperature when using the degassing extension

Ordering Information

IONIVAC Transmitter ITR 200 S

With Display

Part No. 230 078

Part No. 240 020

Part No. 240 021

see section "Miscellaneous", para.

"Oerlikon Leybold Vacuum Calibration Service"

see section

"Connection Cable for active Sensors"

ITR 200 S, DN 25 KF 1 switching function Part No. 230 250 Part No. 230 251 ITR 200 S, DN 25 KF Profibus interface, 2 switching functions Part No. 230 252 ITR 200 S, DN 40 CF-R, rotatable CF flange 1 switching function Part No. 230 254 Part No. 230 255 ITR 200 S, DN 40 CF-R, rotatable CF flange Profibus interface, 2 switching functions Part No. 230 256 ITR 200 S, DN 40 CF-R, rotatable CF flange DeviceNet interface, 2 switching functions Part No. 230 253 Part No. 230 257 Options Power supply for IONIVAC transmitter 100 V - 240 V AC / 24 V DC incl. 5 m connection cable and 5 m RS 232 C cable Part No. 121 06 Part No. 121 06 Baffle, DN 25 KF,

Part No. 230 078

Part No. 240 020

Part No. 240 021

see section "Miscellaneous", para.

"Oerlikon Leybold Vacuum Calibration Service"

see section
"Connection Cable for active Sensors"

Without Display

with centering ring (FPM)

Replacement sensor IE 200, DN 25 KF ¹⁾

Calibration

Connection cable

IE 200, DN 40 CF-R 1)

¹⁾ including hex. socket screw key

Connection Cables for Active Sensors

Active Sensors

Operating Units for Active Sensors

DISPLAY TWO

CENTER ONE

		DISPLAY THREE	CENTER TWO CENTER THREE
THERMOVAC Transmitter TTR 91, TTR 91 S, TTR 96 S a. o.	Туре А	Туре А	Туре А
PENNINGVAC Transmitter PTR 90, PTR 225, PTR 225 S, PTR 237	-	Туре А	Туре А
CERAVAC Transmitter CTR 90, CTR 91, CTR 100	-	-	Type B
IONIVAC Transmitter ITR 90, ITR 200 S	-	_	Type C

DISPLAY ONE

Operating Units for Active Sensors

	- p	
Active Sensors	IONIVAC IM 540	Bare wire ends
	(Channel 3 and 4)	
THERMOVAC Transmitter TTR 91, TTR 91 S, TTR 96 S a. o.	Туре А	-
CERAVAC Transmitter CTR 90, CTR 91, CTR 100	Туре В	-
IONIVAC Transmitter ITR 90, ITR 200 S	-	Type E

Connection Cable

Cables	
Type A	FCC 68 (RJ45) on both ends, 8 way, shielded
Type B	Sub-D 15 way female to FCC 68 (RJ45), 8 way, shielded
Type C	Sub-D 15 way female to Sub-D 15 way male, shielded
Type E	Sub-D 15 way female to bare wire ends, shielded

Ordering Information

Connection Cable

	lype A	іуре в
Cable length		
5 m	Part No. 124 26	Part No. 230 013
10 m	Part No. 230 012	Part No. 230 014
15 m	Part No. 124 27	Part No. 230 015
20 m	Part No. 124 28	Part No. 230 016
30 m	Part No. 124 29	Part No. 230 017
40 m	Part No. 124 30	Part No. 230 018
50 m	Part No. 124 31	Part No. 230 019
75 m	Part No. 124 32	Part No. 230 020
100 m	Part No. 124 33	Part No. 230 021

Ordering Information

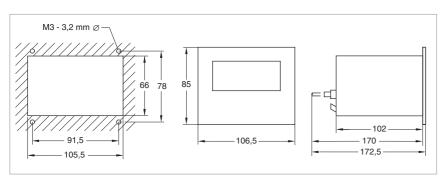
Connection Cable

	Type C	iype E
Cable length		
5 m	Part No. 124 55	Part No. 124 63
10 m	Part No. 230 022	Part No. 230 023
15 m	Part No. 124 56	Part No. 124 64
20 m	Part No. 124 57	Part No. 124 65
30 m	Part No. 124 58	Part No. 124 66
40 m	1)	Part No. 124 67
50 m	1)	Part No. 124 68
75 m	1)	Part No. 124 69
100 m	1)	Part No. 124 70

¹⁾ Longer cable runs are not specified because of the RS 232 C connection

Operating Units for Active Sensors

DISPLAY ONE


Cost-effective, compact single channel display unit for the transmitters from the THERMOVAC serie.

Advantages to the User

- Power supply voltage for the transmitters
- Two-digit mantissa in the range from 5 x 10^{-4} to 1 x 10^{3} mbar
- Readout selectable between mbar, Torr or Pascal
- 0 to 10 V chart recorder output via plug-in screw terminals
- The switching threshold of the transmitters has been looped through to plug-in terminals
- Transmitter threshold settings can be displayed by a single key press on the transmitter
- Compact bench top enclosure (1/4 19 in., 2 HU)
- For fitting into 19 in., 3 HU racks

Connectable Sensors

- TTR 211
- TTR 216 S
- TTR 90
- TTR 90 S
- TTR 91
- TTR 91 S
- TTR 96 S

Dimensional drawing and panel cut-out for the DISPLAY ONE

DISPLAY ONE

Number of measurement channels	1	
Display for measured values	digital, 7 segment LED	
Display range mbar (Torr)	5 x 10 ⁻⁴ to 1 x 10 ³ (3.8 x 10 ⁻⁴ to 7.5 x 10 ²)	
Unit of measurement (selectable)	mbar, Torr, Pascal	
Switching thresholds	from the transmitter are run to a terminal strip	
Chart recorder output ($R_a > 2.5 \text{ k}\Omega$)	0 - 10 Volt, characteristic corresponds to the connected transmitter	
Main connection EU version US version	180 V - 250 V / 50-60 Hz 90 V - 130 V / 50-60 Hz	

Ordering Information

DISPLAY ONE

EU version, including mains cord	Part No. 230 001 Part No. 235 001	
US version, including mains cord		
THERMOVAC transmitter		
TTR 91, TTR 91 S, TTR 96 S	see section "Active Sensors"	
Connection cable, FCC 68 on both ends,		
8 way, shielded	Туре А	
5 m	Part No. 124 26	
10 m	Part No. 230 012	
15 m	Part No. 124 27	
20 m	Part No. 124 28	
30 m	Part No. 124 29	
40 m	Part No. 124 30	
50 m	Part No. 124 31	
75 m	Part No. 124 32	
100 m	Part No. 124 33	
Adapter panel		
for installation in a 3 HU, 19 in. rack	Part No. 230 005	

DISPLAY TWO / THREE

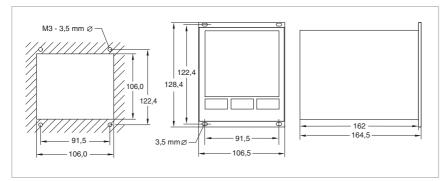
Cost-effective, operating and display units for the transmitters from the THERMOVAC and PENNINGVAC series.

All channels are displayed simultaneously.

Advantages to the User

- Power supply voltage for the transmitters
- Display range from 1 x 10⁻⁹ to 2000 mbar
- Readout selectable between mbar, Torr or Pascal
- Adjustable switching thresholds with variable hysteresis, floating changeover contacts and visual indication of the switching status in the display

- Option of entering gas correction factors for PENNINGVACs
- Separate chart recorder outputs 0 - 10 V for each measurement channel
- Compact bench top enclosure (1/4 19 in., 3 HU)
- For fitting into 19 in., 3 HU racks


Connectable Sensors

THERMOVAC

- TTR 211
- TTR 216 S
- TTR 90
- TTR 91
- TTR 96 S
- TTR 100
- TTR 100 S2

PENNINGVAC

- PTR 90
- PTR 225
- PTR 225 S
- PTR 237

Dimensional drawing and panel cut-out for the DISPLAY TWO and THREE

Technical Data DISPLAY TWO DISPLAY THREE

Number of measurement channels	2	3
Display for measured values	digital, 7 segment LED, 4 digits	digital, 7 segment LED, 4 digits
Display range mbar Torr)	1 x 10 ⁻¹⁰ to 2000 (0.75 x 10 ⁻¹⁰ - 1500)	1 x 10 ⁻¹⁰ to 2000 (0.75 x 10 ⁻¹⁰ - 1500)
Unit of measurement (selectable)	mbar, Torr, Pascal	mbar, Torr, Pascal
Gas type correction (for PTR)	factor adjustable	factor adjustable
Sensor connection	FCC68 (RJ45)	FCC68 (RJ45)
Sensor power supply V DC	24	24
Electrical outputs	screw terminal	screw terminal
Switching threshold Number Adjustment range Hysteresis Relay contact Load rating	2 (1 per channel) sensor dependent adjustable floating changeover contact 60 V, 1 A DC / 30 V, 1 A AC	3 (1 per channel) sensor dependent adjustable floating changeover contact 60 V, 1 A DC / 30 V, 1 A AC
Ready relay Relay contact Load rating	normally open contact 60 V, 1 A DC / 30 V, 1 A AC	normally open contact 60 V, 1 A DC / 30 V, 1 A AC
Chart recorder output ($R_a > 10 \text{ k}\Omega$)	0 - 10 V per measurement channel, output characteristic corresponds to the connected transmitter	0 - 10 V per measurement channel, output characteristic corresponds to the connected transmitter
Control input	PENNINGVAC PTR: high voltage on	PENNINGVAC PTR: high voltage on
Mains connection V AC / Hz	85 - 240 / 50 - 60	85 - 240 / 50 - 60
Power consumption W	< 10	< 15
Nominal temperature range °C	+5 to +50	+5 to +50
Weight kg (lbs)	1.3 (2.87)	1.4 (3.09)
Protection class IP	40	40

Ordering Information DISPLAY TWO DISPLAY THREE

EU version, including mains cord US version, including mains cord	Part No. 230 024 Part No. 235 024	Part No. 230 025 Part No. 235 025
THERMOVAC transmitter TTR 91, TTR 96 S, TTR 100	see section "Active Sensors"	see section "Active Sensors"
PENNINGVAC transmitter PTR 225, PTR 227	see section "Active Sensors"	see section "Active Sensors"
Connection cables for THERMOVAC and PENNINGVAC (Type A)	see section "Connection Cables for Active Sensors"	see section "Connection Cables for Active Sensors"
Adapter panel for installation in a 3 HU, 19 in. rack	Part No. 230 005	Part No. 230 005

CENTER ONE

Universal and compact display and operating unit for the active sensors from the CERAVAC, THERMOVAC, PENNINGVAC and IONIVAC series.

Advantages to the User

- Power supply voltage for the transmitters
- Display range from 1 x 10⁻¹⁰ to 1500 mbar
- Automatic switchover to exponential readout of the measured data depending on the pressure range
- Readout selectable between mbar, Torr or Pascal
- Adjustable switching threshold with variable hysteresis, floating changeover contact and visual indication of the switching status on the display

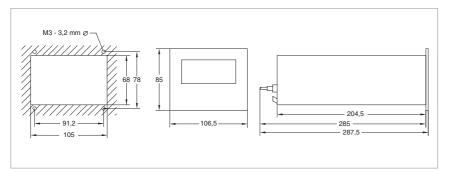
- Zero correction for both display and chart recorder output through a key when using CERAVAC transmitters
- Option of entering gas correction factors for PENNINGVACs
- Chart recorder output 0 10 Volt
- RS 232 C interface with adjustable baud rate
- Relay output for error signalling
- Compact bench top enclosure (1/4 19 in., 2 HU)
- For fitting into 19 in., 3 HU racks

Connectable Sensors

THERMOVAC

- TTR 211
- TTR 216 S
- TTR 90
- TTR 91
- TTR 96 S
- TTR 100
- TTR 100 S2

PENNINGVAC


- PTR 90
- PTR 225
- PTR 225 S
- PTR 237

CERAVAC

- CTR 90
- CTR 91
- CTR 100

IONIVAC

- ITR 90
- ITR 100
- ITR 200 S

Dimensional drawing and panel cut-out for the CENTER ONE

CENTER ONE

Number of measurement channels	1
Display for measured values	digital, 7 segment LED, 5 digits
Display range mbar (Toru	1 x 10 ⁻¹⁰ to 1500 (0.75 x 10 ⁻¹⁰ to 1125)
Unit of measurement (selectable)	mbar, Torr, Pascal, Micron
Gas type correction	factor adjustable
Sensor connection	15 way Sub-D socket FCC68 (RJ45)
Sensor power supply V D0	24
Electrical inputs and outputs	9 way Sub-D plug
Switching threshold Number Adjustment range Hysteresis Relay contact Load rating	1 sensor dependent adjustable floating changeover contact 60 V, 0.5 A DC / 30 V, 0.5 A AC
Error message Relay contact Load rating	floating normally open contact 60 V, 0.5 A DC / 30 V, 0.5 A AC
Chart recorder output ($R_a > 10 \text{ k}\Omega$)	0 - 10 Volt, characteristic corresponds to the connected transmitter
Control input	PTR: high voltage on ITR 100: emission on
Interface RS 232 C	9 way Sub-D socket
Mains connection V AC / H	z 85 V - 264 / 50-60
Power consumption V	< 30
Weight kg (lbs	0.85 (1.9)
Protection class II	30

Ordering Information

CENTER ONE

EU version with 2 m EURO mains cord US-Version with 2 m US mains cord	Part No. 230 002 Part No. 235 002
THERMOVAC, PENNINGVAC, CERAVAC and IONIVAC transmitters	see section "Active Sensors"
Connection cables for THERMOVAC and PENNINGVAC (Type A), CERAVAC (Type B) and IONIVAC (Type C)	see section "Connection Cables for Active Sensors"
Adapter panel for installation in a 3 HU, 19 in. rack	Part No. 230 005
Screw terminal for the 25 way output socket	Part No. 230 006

CENTER TWO / THREE

Universal display and operating units for the active sensors from the CERAVAC, THERMOVAC, PENNINGVAC and IONIVAC series. All channels are displayed simultaneously.

Advantages to the User

- Power supply voltage for the transmitters
- Display range from 1 x 10⁻¹⁰ to 1500 mbar
- Automatic switchover to exponential readout of the measured data depending on the pressure range
- Readout selectable between mbar, Torr. Micron or Pascal
- Adjustable switching thresholds with variable hysteresis, floating changeover contacts and visual indication of the switching status in the display, freely assignable to the individual measurement channels
- Zero correction for both display and chart recorder output through a key when using CERAVAC transmitters

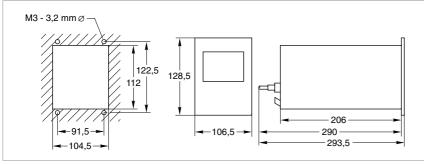
- Option of entering gas correction factors for PENNINGVACs
- Separate chart recorder outputs 0 - 10 V for each measurement channel
- Additional chart recorder output 0 - 10 V programmable to several measurement channels
- RS 232 C interface with adjustable baud rate
- Relay output for error signalling
- Compact bench top enclosure (1/4 19 in., 3 HU)
- For fitting into 19 in., 3 HU racks

Connectable Sensors

THERMOVAC

- TTR 211
- TTR 216 S
- TTR 90
- TTR 91
- TTR 96 S
- TTR 100
- TTR 100 S2

PENNINGVAC


- PTR 90
- PTR 225
- PTR 225 S
- PTR 237

CERAVAC

- CTR 90
- CTR 91
- CTR 100

IONIVAC

- ITR 90
- ITR 200 S

Dimensional drawing and panel cut-out for the CENTER TWO and THREE

Technical Data CENTER TWO CENTER THREE

Number of measurement channels	2	3	
Display for measured values	digital, 7 segment LED, 5 digits	digital, 7 segment LED, 5 digits	
Display range mbar	1 x 10 ⁻¹⁰ to 1500	1 x 10 ⁻¹⁰ to 1500	
Unit of measurement (selectable)	mbar, Torr, Pascal, Micron	mbar, Torr, Pascal, Micron	
Gas type correction	factor adjustable factor adjustable		
Sensor connection	15 way Sub-D socket FCC68 (RJ45) 15 way Sub-D socket FCC68		
Sensor power supply V DC	24 24		
Electrical outputs	25 way Sub-D socket	25 way Sub-D socket	
Switching threshold Number Adjustment range Hysteresis Relay contact Load rating	independently assignable 4 sensor dependent adjustable floating changeover contact 60 V, 0.5 A DC / 30 V, 0.5 A AC	independently assignable 6 sensor dependent adjustable floating changeover contact 60 V, 0.5 A DC / 30 V, 0.5 A AC	
Error message Relay contact Load rating	floating normally open contact floating normally open contact 60 V, 0.5 A DC / 30 V, 0.5 A AC 60 V, 0.5 A DC / 30 V, 0.5 A		
Chart recorder output ($R_a > 10 \text{ k}\Omega$)	0 - 10 V per measurement channel, output characteristic corresponds to the connected sensorr, in addition one chart recorder output can be programmed	0 - 10 V per measurement channel, output characteristic corresponds to the connected sensorr, in addition one chart recorder output can be programmed	
Control input	PENNINGVAC PTR: high voltage on	PENNINGVAC PTR: high voltage on	
Interface RS 232 C	9 way Sub-D socket	9 way Sub-D socket	
Mains connection V AC / Hz	90 - 250 / 50 - 60	90 - 250 / 50 - 60	
Power consumption W	45	65	
Nominal temperature range °C	+5 to +50	+5 to +50	
Weight kg (lbs)	1.1 (2.43)	1.2 (2.65)	
Protection class IP	20	20	

CENTER TWO Ordering Information CENTER THREE

EU version with 2 m EURO mains cord US-Version with 2 m US mains cord	Part No. 230 004 Part No. 235 004	Part No. 230 003 Part No. 235 003	
THERMOVAC, PENNINGVAC, CERAVAC and IONIVAC transmitters	see section "Active Sensors"	see section "Active Sensors"	
Connection cables for THERMOVAC and PENNINGVAC (Type A), CERAVAC (Type B) and IONIVAC (Type C)	see section "Connection Cables for Active Sensors"	see section "Connection Cables for Active Sensors"	
Screwed connection for 9 way Sub-D socket	Part No. 230 006	Part No. 230 006	

PIEZOVAC PV 20

This complete vacuum gauge offers accurate and cost-effective measurements in the range between 1 and 2000 mbar (0.75 and 1500 Torr), or 0.1 and 200 mbar (0.075 and 150 Torr).

Advantages to the User

- Complete instrument: Sensor and cable included
- Dual LCD display combines the advantages of analog and digital readouts
- Clear display of pressure and operating status with analog trend indication, can also be read from a great distance
- Logarithmic/linear 0 to 10 V chart recorder output
- Compact bench-top unit (1/4 19 in., 3 HU), which may also be installed in panal cut-outs and 19 in. racks
- Ceramic absolute pressure sensor which is highly corrosion resistant
- THERMOVAC sensors TR 211, TR 212 and TR 216 may be alternativily connected
- CE mark

Typical Applications

- General pressure measurements in the fine and rough vacuum range, in connection with vacuum furnaces and analytical instruments
- Monitoring the operation of backing pumps and vacuum systems
- Replacement of mercury manometers in the lab and in production lines

Sensors

The PIEZOVAC PV 20 is delivered complete with a DI 2000 or DI 200 sensor. The sensor is supplied fully aligned for operation.

For information on the THERMOVAC sensors, see chapter "Activ Sensors".

PIEZOVAC PV 20

Display range mbar (Torr)		0.1 to 2000 (0.075 to 1500)		
Display		digital: 7-segment LCD,		
		analog: LCD bar		
Measurement uncertainty				
with DI 200/201/2000 Sensor	% FS	0.2		
Unit of measurement (selectable)		mbar, Torr, Pa, Micron		
Chart recorder output (Ra > 2,5 k Ω)		0 to 10 V, linear divisions for absolute pressure sensors,		
		about 10.5 V during faults		
		0 to 10 V, logarithmic divisions for		
		THERMOVAC sensors (1.67 V/decade)		
Main connection 50/60 Hz (selectable	e) V	90 to 130 / 180 to 250		
Power consumption VA		9		
Storage temperature range	°C	-40 to +60		
Nominal temperature range	°C	0 to 40		
Max. rel. humidity	% n.c.	80		
Weight, approx.	kg (lbs)	2 (4.4)		
Dimensions (W x H x D) mm		106.5 x 128.5 x 172		
Cable length, max.		100		
Connectable sensors		TR 211/212/216, DI 200/201/2000/2001		

Ordering Information

PIEZOVAC PV 20

Complete with 2 m long main cord and DI 2000 sensor, with 5 m long cable, 230 V AC, Measurement range 1 - 2000 mbar (0.75 - 1500 Torr)	Part No. 157 96
Complete with 2 m long main cord and DI 200 sensor, with 5 m long cable, 230 V AC, Measurement range 0.1 - 200 mbar (0.075 - 150 Torr)	Part No. 157 97
Calibration	see section "Miscellaneous",
	para. "Oerlikon Leybold Vacuum Calibration Service"
Options 19" installation frame 1/4 19" blank panel	Part No. 161 00 Part No. 161 02

Ultra High Vacuum Gauges

IONIVAC IM 540

The 3-channel display and operating unit IONIVAC IM 540 offers, by combination of up to 4 different principles of measurement – Pirani, capacitive, Bayard-Alpert and Extractor–, complete coverage and control of the vacuum pressure in the range between 10⁻¹² mbar and atmospheric pressure.

Advantages to the User

- Precise UHV pressure measurements with the Bayard-Alpert sensor
 IE 414 (offering excellent longterm stability) or the Extractor sensor
 IE 514 (offering an extremely low X-ray limit of < 1 x 10⁻¹² mbar)
- 1 measurement channel for IONIVAC sensor (Bayard-Alpert or Extractor)
- Possibility of simultaneously connecting a second IONIVAC sensor
- Degassing of the anode through electron bombardment with time-limit
- Continuous UHV measurement also during the degassing phase (up to +250 °C with bakeable gauge head cable)
- 2 measurement channels for direct connection of transmitters from the series THERMOVAC TTR and CERAVAC CTR
- Selectable pressure units (mbar, Torr, Pascal, Micron)
- Display of a single measurement channel with pressure trend through analogue bargraph or simultaneous display of all measurement channels
- Two adjustable thresholds with adjustable hysteresis and freely assignable to the measurement channels

- Compact benchtop enclosure (1/2 19 in., 3 HU)
- RS 232 C interface provided as standard
- Simple software updates possible through the RS 232 interface
- Profibus interface (optional)
- CE mark

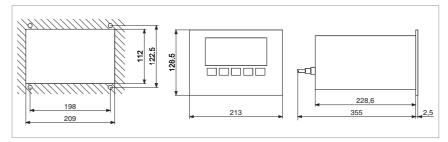
Typical Applications

- Pressure measurement and control in the UHV range
- Measurement of ultimate pressure in UHV systems
- Checking of ultimate pressure in semiconductor production
- Total pressure measurements in the area of cryo technology
- Total pressure measurements in calibration systems

Connectable Sensors

- Bayard-Alpert sensor IE 414
- Extractor sensor IE 514

(see Chapter "Additional Sensors")


combined with

- THERMOVAC TTR 211, TTR 216 S, TTR 90, TTR 91 and TTR 96 S
- CERAVAC CTR 90, CTR 91 and CTR 100

(see Chapter "Active Sensors")

Two passive sensors working with ionization technology (IE 414 and/or IE 514) could be connected simuntaneously to the IONIVAC IM 540 while only one is in operation.

A pressure dependent emission control of these sensors is possible if a THERMOVAC TTR or CERAVAC CTR 100/CTR 91 of suitable range overlap is connected.

Front panel cut out (left) and dimensional drawing (right) for the IONIVAC IM 540

IONIVAC IM 540

Number of measurement channels	3
Bayard-Alpert / Extractor	Channel 1 or 2
THERMOVAC / CERAVAC	Channel 3 and 4
Display range mbar (Torr) 1 x 10 ⁻¹² to 1100 (0.75 x 10 ⁻¹² to 825) Display range Extractor mbar (Torr) 1 x 10 ⁻¹² to 1 x 10 ⁻⁴ (0.75 x 10 ⁻¹² to 0.75 x 10 ⁻⁴) Display range Bayard-Alpert mbar (Torr) 1 x 10 ⁻¹¹ to 1 x 10 ⁻² (0.75 x 10 ⁻¹¹ to 0.75 x 10 ⁻²)	
Measurement range switching	automatic or decade pre-select
Units of measurement (selectable)	mbar, Torr, Pa, Micron
Measurement uncertainty %	± 10 of the value displayed
Trend indication	bargraph
Measurement value display rate	1 x 10^{-10} to 1 x 10^{-2} mbar, 5 s ⁻¹ 1 x 10^{-12} to 1 x 10^{-10} mbar, 0.5 s ⁻¹
Emission current Extractor sensor mA Bayard-Alpert sensor mA	1.6 0.1 to 10; automatic control
Emission current shutdown at	$p>1 \times 10^{-2}$ mbar, broken cathode, short-circuit, interruption of the electric circuit
Bake out power Extractor / Bayard-Alpert W	20 / 40
Sensor supply, potential for	anode Extractor / Bayard-Alpert: 220 V, cathode Extractor / Bayard-Alpert: 100 V/80 V, Reflector Extractor: 205 V
Sensor connections	Bayard-Alpert and Extractor - single operation is possible 2 x Bayard-Alpert or Extractor (redundant operation)
Measurement system detection	automatically
Measurement system switchover	automatically, pressure dependent, error dependent
Chart recorder outputs for Extractor/Bayard-Alpert ($R_a > 2.5 \text{ k}\Omega$)	logarithmic 0 to 10 V (1 V / dec.) or linear 0 to 10 Volt, error indication U $>$ 10.5 V
Interface (standard / optional)	RS 232 C / Profibus
Switching thresholds (single operation or interval)	2 with floating changeover contact
Mains connection V / Hz	90 - 264 / 50/60
Storage temperature range °C	-40 to +60
Nominal temperature range °C	+5 to +50
Dimensions of the benchtop instrument (WxHxD) mm	213 x 128,5 x 250
Weight, approx. kg (lbs)	3 (6.62)

Ordering Information

IONIVAC IM 540

IONIVAC IM 540		
with 2 m long mains cord (EU + US)	Part No. 230 100	
Options		
Profibus DP interface	Part No. 230 101	
DKD calibration	see section "Miscellaneous"	
IONIVAC sensors	see also section "Additional Sensors"	
IE 414, DN 40 CF	Part No. 158 66	
Replacement cathode IE 414	Part No. 158 63	
IE 514, DN 40 CF	Part No. 158 67	
Replacement cathode IE 514	Part No. 158 61	
Gauge head cables for IE 414/514		
5 m	Part No. 158 68	
10 m	Part No. 150 88	
5 m, bakeable up to 200 °C	Part No. 158 44	
Extension cables for IE 414/514		
10 m	Part No. 245 002	
20 m	Part No. 200 02 937	
THERMOVAC Transmitter TTR	see section "Active Sensors"	
Connection cable for THERMOVAC (Type A)	see section "Connection Cables for Active Sensors"	
CERAVAC Transmitter CTR	see section "Active Sensors"	
Connection cable for CERAVAC (Type B)	see section "Connection cables for active sensors"	

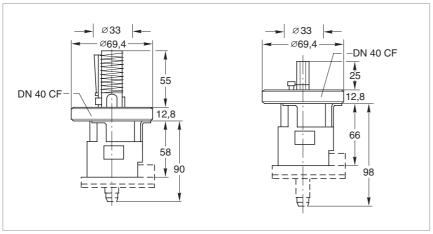
Notes	

Additional Sensors

IONIVAC Sensors IE 414/IE 514

These passive sensors use hot cathode ionization technology.

Advantages to the User


- Exchangeable cathode
- High accuracy of the measurements due to individually calibrated sensing system

IE 414

- Bayard-Alpert sensing system
- Measurement range to 2 x 10⁻¹¹ mbar (1.5 x 10⁻¹¹ Torr)
- Protection shied welded in place

IE 514

- Extractor sensing system
- Reliable to 1 x 10⁻¹² mbar (0.75 x 10⁻¹² Torr)
- Significant reduction of X-ray and ion desorption effects

Dimensional drawing for the IE 414 (left) and IE 414 (right)

Measurement range mbar (Torr) X-ray limit mbar (Torr)		2 x 10 ⁻¹¹ to 10 ⁻² (1.5 x 10 ⁻¹¹ to 10 ⁻²)	10^{-12} to 1 x 10^{-4} (10^{-12} to 7.5 x 10^{-5}) $\leq 10^{-12}$ ($\leq 10^{-12}$)	
		≤ 10 ⁻¹¹ (≤ 10 ⁻¹¹)		
Operating temperature range °C		0 to +80	0 to +80	
Degassing temperature				
at the flange, max.	°C	200 ¹⁾ / 350 ²⁾	200 ¹⁾ / 350 ²⁾	
Material				
Cathode		Iridium with yttric oxid coating	Ilridium with yttric oxid coating	
Feedthrough pins		NiFe 42	NiFe 42	
Anode		Pt/Ir 90/10/pt wire	Mo and CoNiCr	
Vacuum connection DN		40 CF	40 CF	
Adjustment data				
Ion detector potential V		0	0	
Cathode potential V		80	100	
Anode potential V		220	220	
Emission current mA		0.06 to 0.6	1.6	
Heating current for the hot cathod	e A	1.4	1.4	
Heating voltage for the hot cathod	le V	2.7 3.7		
Sensitivity for nitrogen mbar ⁻¹		17 6.6		
Degassing operation V		700	700	
Electron bombardment mA		30	30	
Operating units		IM 520, 510, 540	IM 520, 510, 540	

Ordering Information

IONIVAC sensors	Part No. 158 66	Part No. 158 67
Replacement cathode	Part No. 158 63	Part No. 158 61

IE 414

IE 514

¹⁾ With bakeable gauge head cable

²⁾ With gauge head cable detached

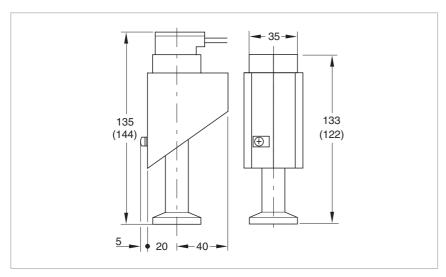
THERMOVAC Sensors TR 211/TR 211 NPT/TR 212/TR 216

These passive sensors use thermal conductivity technology according to Pirani.

Advantages to the User

- Measurement range 5 x 10⁻⁴ to 1000 mbar (3.75 x 10⁻⁴ to 750 Torr)
- Tungsten or platinum filament
- Cost-effective sensing cell
- Fully aligned and temperature compensated 0 to +40 °C
- Constant filament temperature

TR 211


- Aluminum sensing cell with tungsten filament
- Improved temperature compensation

TR 211 NPT/TR 212

- Stainless steel sensing cell with tungsten filament
- Over-pressure resistant

TR 216

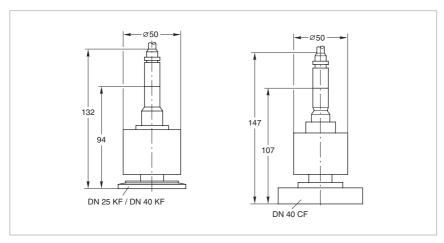
- Stainless steel sensing cell with platinum filament and ceramics feed through
- Well suited for corrosive processes and water vapor atmospheres

Dimensional drawing for the TR 211, TR 212 and TR 216; TR 211 NPT in brackets

Technical Data		TR 211	TR 211 NPT	TR 212	TR 216
3	mbar	5 x 10 ⁻⁴ to 1000	5 x 10 ⁻⁴ to 1000 (3.8 x 10 ⁻⁴ to 7.5 x 10 ²)	5 x 10 ⁻⁴ to 1000	5 x 10 ⁻⁴ to 1000
	(Iorr)	(3.8 x 10 ° to 7.5 x 10²)	(3.8 x 10 ° to 7.5 x 10°)	(3.8 x 10 ° to 7.5 x 10°)	(3.8 x 10 ° to 7.5 x 10°)
Operating temperature range (compensated)	°C	0 to +40	0 to +40	0 to +40	0 to +40
<u> </u>					
Storage temperature range, max.	°C	80	80	80	80
Filament		tungsten	tungsten	tungsten	platinum
Filament temperature	°C	110	110	110	110
Permissible overload (abs.), max.	bar	3	3	10	10
Volume of the sensing cell, approx.	cm ³	11	11	11	11
Vacuum connection	DN	16 KF	1/8" NPT	16 KF/16 CF	16 KF
Materials in contact with the medium		aluminum, Vacon, glass, tungsten CrNi 8020, epoxy cement	stainless steel, Vacon, glass, tungsten CrNi 8020 epoxy cement	stainless steel, Vacon, glass, tungsten CrNi 8020 epoxy cement	stainless steel 1.4301 (SS 304), Al ₂ O ₃ ceramics, CrNi 8020,
Operating units		THERMOVAC TM 21, 22, 23 / COMBIVAC CM 31, 32, 33 / PIEZOVAC PV 20	THERMOVAC TM 21, 22, 23 / COMBIVAC CM 31, 32, 33 / PIEZOVAC PV 20	THERMOVAC TM 21, 22, 23 / COMBIVAC CM 31, 32, 33 / PIEZOVAC PV 20	THERMOVAC TM 21, 22, 23 / COMBIVAC CM 31, 32, 33 / PIEZOVAC PV 20
Ordering Information		TR 211	TR 211 NPT	TR 212	TR 216
THERMOVAC sensors Series 200 DN 16 KF DN 16 CF DN 1/8" NPT		Part No. 157 85 - -	- - Part No. 896 33	Part No. 158 52 Part No. 157 86 -	Part No. 157 87 - -
Replacement sensing cell		Part No. 157 75	Part No. 896 34	-	Part No. 157 77

PENNINGVAC Sensors PR 25/PR 26/PR 27/PR 28

These passive sensors use cold cathode ionization technology according to Penning.


Advantages to the User

- Rugged

- Insensitive to air inrushes and vibrations
- Easy disassembly and cleaning of the measurement system
- Exchangeable cathode plate
- Improved ignition characteristic through titanium cathodes

Option

For protection of the PENNINGVAC sensors against contamination, radiation and other disturbing factors the in-stallation of a baffle is recommended.

Dimensional drawing for the PENNINGVAC PR sensors

Technical Data		PR 25	PR 26	PR 27	PR 28
3	nbar Forr)	1 x 10 ⁻⁹ to 10 ⁻² (0.75 x 10 ⁻⁹ to 10 ⁻²)	1 x 10 ⁻⁹ to 10 ⁻² (0.75 x 10 ⁻⁹ to 10 ⁻²)	1 x 10 ⁻⁹ to 10 ⁻² (0.75 x 10 ⁻⁹ to 10 ⁻²)	1 x 10 ⁻⁹ to 10 ⁻² (0.75 x 10 ⁻⁹ to 10 ⁻²)
High voltage supply (anode potential)	kV	+3.3/+1.6	+3.3/+1.6	+3.3/+1.6	+3.3/+1.6
Storage temperature range	°C	-25 to +80	-25 to +80	-25 to +80	-25 to +80
Nominal temperature range	°C	0 to +80	0 to +80	0 to +80	0 to +200
Degassing temperature (flange)	°C	_	_	_	350
Permissible overload (abs.)	bar	6 ¹⁾	6 ¹⁾	6 ¹⁾	6 ¹⁾
Dead volume	cm ³	21	21	21	21
Materials in contact with the medium		stainless steel, nichrome, ceramics, titanium	stainless steel, nichrome, ceramics, titanium	stainless steel, nichrome, ceramics, titanium	stainless steel, nichrome, ceramics, titanium
Weight, approx. kg ((lbs)	0.75 (1.66)	0.75 (1.66)	0.8 (1.66)	0.8 (1.66)
Vacuum connection	DN	25 KF	40 KF	40 CF	40 CF
Operating units		COMBIVAC CM 31, 32, 33 / PENNINGVAC PM 31			

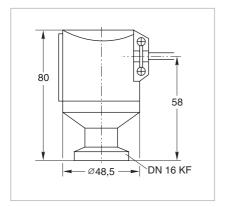
Ordering	Information	PR 2

PENNINGVAC sensors	Part No. 157 52	Part No. 136 46	Part No. 136 47	Part No. 136 48
Replacement cathode plate, titanium	Part No. 162 91			
(5 pcs., incl. 5 ceramics discs) Replacement anode ring	Part No. 200 28 711			
Baffle, with centering ring	Part No. 230 078	Part No. 230 079	-	-

PR 26

PR 28

¹⁾ When using an ultra sealing gasket at the vacuum connection

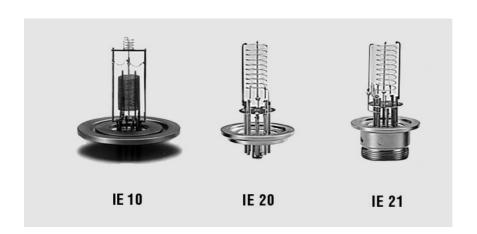

Linear Pressure Sensors DI 200/DI 201/DI 2000/DI 2001/DI 2001 rel

Capacitive pressure sensor based on ceramics technology. Available as absolute or relative pressure sensor.

Advantages to the User

- Pressure sensor of the two-wire
- Absolute pressure ranges from 0.1 to 200 mbar or 1 to 2000 mbar
- Relative pressure range from -1000 mbar to +1000 mbar
- Excellent overload characteristic due to the Al₂O₃ ceramics diaphragm
- Highly corrosion resistant
- Independent of the type of gas
- Vibration resistant
- Supply voltage range of 12 to 30 V DC
- Linear output signal of 4 to 20 mA
- Compact design

Dimensional drawing for the sensors DI 200/DI 201/DI 2000/DI 2001/DI 2001 rel


Typical Applications

- Pressure measurements in the rough vacuum range, and for corrosive media
- Chemical process engineering
- Vacuum packaging
- Drying processes
- Measurement of operating and filling pressure, during the production of lamps
- Filling systems for brake fluids (DI 201/DI 2001)
- Filling systems for refrigerants
- Measurement of pressure relative to atmospheric pressure (DI 2001 rel)

Technical Data	DI 200	DI 201	DI 2000	DI 2001	DI 2001 rel
Measurement range mba (Torr		0.1 to 200 (0.075 to 150)	1 to 2000 (0.75 to 1500)	1 to 2000 (0.75 to 1500)	-1000 to +1000 (-750 to +750) relative pressure
Overload range, max. ba	r 5	5	10	10	10
Nominal temperature range °C	0 to +60	0 to +60	0 to +60	0 to +60	0 to +60
Measurement uncertainty 1) (± temperature error) % FS	3 0.2	0.2	0.2	0.2	0.2
Resolution % FS Reproducibility % FS	0.05	0.05 0.1	0.05 0.1	0.05 0.1	0.05 0.1
Linearity % FS	0.2	0.2	0.2	0.2	0.2
Temperature error Zero drift % FS/10°K Sensitivity drift % FS/10°K		0.1 0.15	0.1 0.15	0.1 0.15	0.1 0.15
Principle of measurement	Capacitive	Capacitive	Capacitive	Capacitive	Capacitive
Sensing head supply	Two-wire system	Two-wire system	Two-wire system	Two-wire system	Two-wire system
Output signal mA	4 to 20	4 to 20	4 to 20	4 to 20	4 to 20
Supply voltage V DC Operating range	7.	+24 typ. 12 to 30, ripple 1 V _{pp}	+24 typ. 12 to 30, ripple 1 V _{pp}	+24 typ. 12 to 30, ripple 1 V _{pp}	+24 typ. 12 to 30, ripple 1 V _{pp}
Dead volume cm ²	3	3	3	3	3
Vacuum connection DN	16 KF	16 KF	16 KF	16 KF	16 KF
Weight, approx. kg (lbs	0.55 (1.2)	0.55 (1.2)	0.55 (1.2)	0.55 (1.2)	0.55 (1.2)
Protection class	44	44	44	44	44
Materials in contact with the medium	Stainless Steel 1.4305 Al ₂ O ₃ (96 %) Ceramics FPM	Stainless Steel 1.4305 Al ₂ O ₃ (96 %) Ceramics EPDM	Stainless Steel 1.4305 Al ₂ O ₃ (96 %) Ceramics FPM	Stainless Steel, 1.4305 Al ₂ O ₃ (96 %) Ceramics, EPDM	Stainless Steel 1.4305 Al ₂ O ₃ (96 %) Ceramics EPDM
Operating units	MEMBRANOVAC DM 11, DM 12 / PIEZOVAC PV 20 / COMBIVAC CM 32, 2T	MEMBRANOVAC DM 11, DM 12 / PIEZOVAC PV 20 / COMBIVAC CM 32, 2T	MEMBRANOVAC DM 11, DM 12 / PIEZOVAC PV 20 / COMBIVAC CM 32, 2T	MEMBRANOVAC DM 11, DM 12 / COMBIVAC CM 32, 2T	MEMBRANOVAC DM 11, DM 12 / COMBIVAC CM 32
Ordering Information	DI 200	DI 201	DI 2000	DI 2001	DI 2001 rel
Linear absolute pressure sensor, complete with 5 m long connection cable and connecting plug	Part No. 158 12	Part No. 158 14	Part No. 158 13	Part No. 158 15	Part No. 245 000

¹⁾ Sum of linearity, hysteresis and reproducibility

Spare Sensors for Older Operating Units

Туре	Corresponding Sensors/ Operating Units	Ordering Information
Replacement spare sensor IE 10	IM 110, IM 110 D	Part No. 163 43
Replacement spare sensor IE 20	IM 210, IM 210 D, IT 230	Part No. 163 14
Replacement spare sensor IE 21	IM 210, IM 221	Part No. 158 17
Replacement spare cathode	IE 220	Part No. 158 58 ¹⁾
Replacement spare sensor TR 301	TM 320, CM 350, IM 520, DM 11, DM 12, CM 32	Part No. 157 40 ¹⁾
Replacement sensing cell	TR 201/901 DN 16 KF	Part No. 162 09 ¹⁾
Replacement sensing cell	TR 201/901 NPT	Part No. 896 76 ¹⁾
Replacement sensing cell	TR 301	Part No. 157 43 ¹⁾

¹⁾ to be discontinued

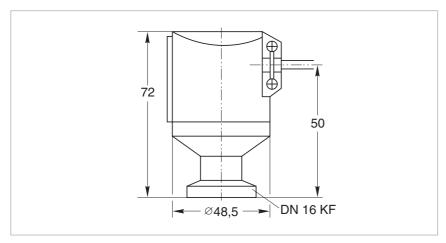
Notes	

Pressure Switches and Control Instruments

Low Pressure Safety Switch PS 113 A

Switch indicating whether or not the pressure has reached the level of the atmospheric pressure after venting. Preset diaphragm pressure switch set to a trigger of 6 mbar (4 Torr) below atmospheric pressure.

Advantages to the User


- Rugged design
- High switching capacity
- Corrosion protected
- Easy to use
- IP 44 protection
- Can be connected to a programmable control

Typical Applications

- Venting facilities
- Safety shutdown of vacuum systems
- Load locks

Technical Note

Due to the diaphragm material used (EPDM) the PS 113 A is not suited for applications in which the process gas contains large quantities of helium. Owing to diffusion effects the leak rate of the diaphragm settles at about 1×10^{-6} mbar l/s for helium.

Dimensional drawing for the low pressure safety switch PS 113 A

Low Pressure Safety Switch

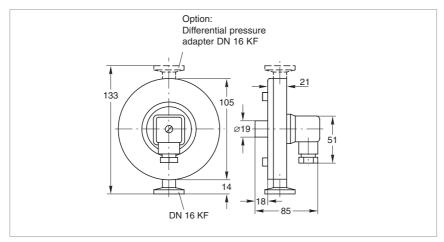
mbar (Torr)	Approx. 6 (4.5) below atmospheric pressure
mbar (Torr)	3 (2.3) below atmospheric pressure
mbar (Torr)	2 (1.5)
essure (abs.)	
mbar (Torr)	2000 (1500)
°C	-25 to +85
°C	0 to +85
	Changeover contacts, gold-plated, for prog. controls
	> 10 ⁵ switching cycles
	100 mA / 24 V AC
	30 mA / 24 V DC
	6.3 mm flat plug
DN	16 KF
nedium	Stainless steel 1.4305, 1.4310,
	Stainless steel 1.4300 PTFE coated
IP	44
	mbar (Torr) mbar (Torr) essure (abs.) mbar (Torr) °C °C

Ordering Information

Low Pressure Safety Switch

Low pressure safety switch PS 113 A, DN 16 KF;	Part No. 230 011
complete with 3 m long cable	

Pressure Switch PS 115



Advantages to the User

- High switching accuracy (± 0.1 mbar)
- Stable long term operating characteristics
- Rugged, corrosion protected design
- Increased switching capacity (floating) when using the switching amplifier SV 110
- Switching contact (n.c.) in the reference chamber and thus protected against corrosion
- For operating pressures up to 3 bar
- For high ambient temperatures
- Upon request, the switching threshold may be set in the factory

Rugged absolute pressure switch with electrical switching contact and a adjustable switching pressure between 0.5 and 2000 mbar (0.4 and 1500 Torr).

Through the differential pressure adapter (optional) the PS 115 pressure switch may be converted to operate as a differential pressure switch. The adapter consists of a DN 16 KF flange with screw-in thread and a sealing arrangement, and it is screwed into the PS 115 instead of the adjustment valve. The operating range extends to 2000 mbar (1500 Torr). Brief overloading to 3000 mbar (2250 Torr) is permissible without impairing switching accuracy. In this operating range differential values of +5 to -20 mbar (+3.75 to -15 Torr) can be adjusted via the set screw.

Dimensional drawing for the pressure switch PS 115

Pressure Switch

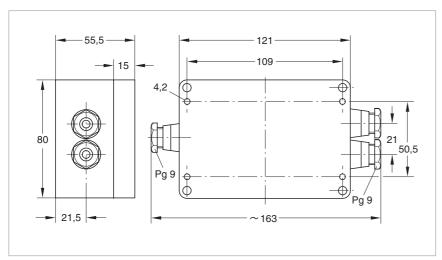
Switching range mbar (Torr	0.5 to 2000 (0.375 to 1500)
Overload limit mbar (Torr	3000 (2250)
Sensitivity mbar (Torr	0.1 (0.75)
Switching hysteresis mbar (Torr	0.5 (0.375)
Temperature coefficient %/°k	0.4 of the switching value
Nominal temperature range	
briefly (max. 8 h) °C	120
continuous °C	0 to +90
Switching contact	Normally closed, gold-plated, for prog. controls
Switching voltage	24
Switching current (max.) mA	10
Contact resistance, max. kC	1
Electrical connection	Plug (DIN 43 650)
Protection class IF	65
Vacuum connection DN	16 KF
Materials in contact with the medium	
Measurement chamber	Stainless steel 1.4301; 1.4401; 1.4310; 1.3541; FPM
Reference chamber	Stainless steel 1.4301; 1.4401; 1.3541; glass; gold
Volume of the measurement chamber cm ²	4
Volume of the reference chamber cm ²	20
Weight kg (lbs	1.3 (2.87)

Ordering Information

Pressure Switch

Part No. 160 04		
Part No. 160 05		
Part No. 200 28 306		
Part No. 200 28 307		
Part No. 160 74		
Part No. 160 06		
Part No. 160 78		

Switching Amplifier SV 110


The diaphragm contact of the pressure switches is connected on one side to ground and is rated to 24 V / 10 mA max. When wanting to switch higher voltages or currents, a switching amplifier will be needed. The switching amplifier is equipped with powerful floating changeover contacts. The output relay

is energized as soon as the pressure drops below the switching threshold set up on the pressure switch.

The electrical connections are provided via screw terminals and are run out of the plastic enclosure through PG fittings.

Advantages to the User

- Increased ratings for the switch
- Changeover contact

Dimensional drawing for the switching amplifier SV 110

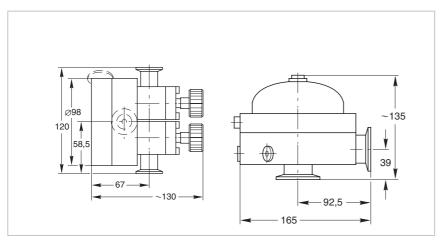
Switching Amplifier

Mains supply, 50/60 Hz		110/130/220/240 V, selectable
Power consumption	VA	3
Output relay		
Switching voltage / current	V/A	250 / 5
Switching power, max.	VA	500
Response time	ms	30
Relaise time	ms	7
Control circuit	V / mA	24 / 10
Ambient temperature, max.	°C	50
Weight, approx	kg (lbs)	0.36 (0.79)

Ordering Information

Switching Amplifier

Diaphragm Pressure Regulators MR 16/MR 50


The MR 16/50 diaphragm regulators are absolute pressure regulators which automatically adapt the pumping speed of a vacuum pump depending on the amount of gas, without the need for an external power supply.

Advantages to the User

- Non-incremental, automatic pressure control
- Simple setting of the control pressures
- High control accuracy
- Corrosion protected stainless steel design
- Easy to disassemble for cleaning and maintenance
- Trouble-free operation in ex. areas
- Built-in isolation valves for the process connection and the vacuum pump (MR 16)

Typical Applications

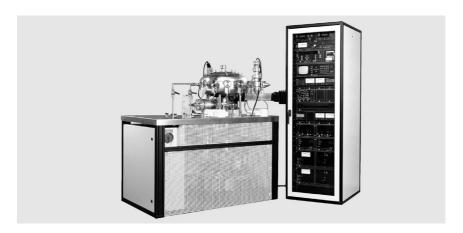
- Distillation processes of all kinds
- Solvent recovery
- Drying processes
- Temperature control on bath cryostats
- Degassing of liquids and plastics

Dimensional drawing for the diaphragm regulator MR 16 (left) and MR 50 (right)

Diaphragm Pressure Regulator

MR 16	MR	50

Control range	mbar (Torr)	10 to 1000 (7.5 to 750)	10 to 1000 (7.5 to 750)
Control inaccuracy		± 2 % of the pressure control (10 - 90 % of flow)	± 2 % of the pressure control (10 - 90 % of flow)
Throughput	m ³ /h	16	50
Nominal temperature range	°C	+5 to +100	+5 to +100
Storage temperature range	°C	-25 to +60	-25 to +60
Temperature coefficient	%/K	0.3	0.3
Settling time	ms	5	5
Permissible overload for brief periods bar		3	3
Diaphragm material		FPM/EPDM	FPM/EPDM
Housing material		stainless steel 1.4571	stainless steel 1.4571
Installation orientation		Any	Any
Dimensions		see dimensional drawing	see dimensional drawing
Vacuum connection	2x DN	16 KF	40 KF
Measurement connection	3x thread R	1/8"	1/8"
Weight, approx.	kg (lbs)	2.7 (6.0)	8.0 (17.6)


Ordering Information

Diaphragm Pressure Regulator

	MR 16	MR 50
Diaphragm pressure regulator		
MR 16, DN 16 KF	Part No. 160 25	_
MR 50, DN 40 KF	-	Part No. 160 27
Options		
Stainless steel measurement flange,		
DN 16 KF,		
for connection to a reference and/or		
process chamber or pumping stud	Part No. 160 26	Part No. 160 26
KALREZ diaphragm	-	Part No. 200 28 597
Spare parts		
EPDM diaphragm and seal kit	Part No. 160 29	_
Viton diaphragm and seal kit	Part No. 160 31	_
Seal kit MR 50,		
incl. EPDM and Viton diaphragms	-	Part No. 160 32
Adjustment screw for		
the adjustable valve,		
complete with seal	_	Part No. 240 001

Miscellaneous

Oerlikon Leybold Vacuum Calibration Service

Calibration of vacuum gauges in the pressure range from 10-9 to 1000 mbar (10⁻⁹ to 750 Torr) as DKD or factory calibration.

Advantages to the User

- Clear reference to the reference quantities
- Reproducible measurements
- Constantly high quality over time
- Reliable checking of existing gauges
- Unambiguous description of the process

Since 1981 Oerlikon Leybold Vacuum has been offering to all customers an impartial calibration service for gauges and sensors of any make. A DKD calibration certificate or a factory calibration certificate is issued for every calibration. Instruments with insufficient long-term stability or such instruments where the principle of measurement is not suited for calibration, can not be calibrated.

Typical Applications

Calibrated vacuum gauges are used under the following conditions:

- If the requirements concerning reproducibility and comparability of experiment runs are high

- If an unambiguous reference is required for a large number of pressure gauges
- If an unambiguous description for processes is required
- If for experiments and processes unambiguous traceability of the measured pressures to basic quantities is demanded by the authorities
- If testing to DIN/ISO 9000 is required in the following areas
 - Research
 - Thin-film engineering
 - Manufacture of systems
 - Military
 - Energy
 - Chemistry production
 - Production of pharmaceuticals and herbicides
 - Sputtering systems
 - Aircraft and space industry
 - Manufacture of lamp

DKD / Factory Calibration

It is the task of the German Calibration Service (DKD) to ensure traceability of industrial measurements and testing to national standards.

The German Calibration Service is supported jointly by the Federal Institution for Physics and Technology (PTB), the industry, the Federal Minister for Economics and the Western European Metrology Club (WEMC).

The transfer standards in the DKD calibration facility used by Oerlikon Leybold Vacuum are checked regularly (recalibrated) by the PTB.

Within the framework of the German Calibration Service, the calibration system at Oerlikon Leybold Vacuum has been checked and approved by the PTB and the applied transfer standards have been calibrated by the PTB.

Factory calibrations were performed with standards which have not been calibrated directly at the PTB; instead the transfer standards of the in-house DKD calibration service are used. Thus traceability to national standards is ensured in both cases.

Technical Data DKD Calibration

Calibration range mbar	to 10 ⁻³	to 10 ⁻⁵	to 10 ⁻⁹
------------------------	---------------------	---------------------	---------------------

Ordering Information

DKD calibration	Part No. 157 12	Part No. 157 13	Part No. 157 14

Technical Data

Factory Calibration

DKD Calibration

Calibration range mb	ar to 10 ⁻³	to 10 ⁻⁵	to 10 ⁻⁸
----------------------	------------------------	---------------------	---------------------

Ordering Information

Factory Calibration	Factor	v Cali	bration
---------------------	--------	--------	---------

Factory calibration	Part No. 154 22	Part No. 154 23	Part No. 154 24
---------------------	-----------------	-----------------	-----------------

Calibration Systems are discribed in the Product Section C10.

Germany

Oerlikon Leybold Vacuum GmbH Bonner Strasse 498

D-50968 Cologne Phone: +49-(0)221-347 1234 Fax: +49-(0)221-347 1245 sales.vacuum@oerlikon.com www.oerlikon.com

Oerlikon Leybold Vacuum GmbH Sales Area North/Northeast

Branch Office Berlin Buschkrugallee 33 1. Obergeschoss D-12359 Berlin Phone: +49-(0)30-435 609 0 Fax: +49-(0)30-435 609 10

Leybold Vacuum GmbH Sales Area South/Southwest Branch Office Munich

sales.vacuum.bn@oerlikon.com

Sendlinger Strasse 7 D-80331 Munich Phone: +49-(0)89-357 33 9-10 Fax: +49-(0)89-357 33 9-33

sales.vacuum.mn@oerlikon.com service.vacuum.mn

Oerlikon Leybold Vacuum GmbH Sales Area West & Benelux Branch Office Cologne

Bonner Strasse 498 D-50968 Cologne Phone: +49-(0)221-347 1270 Fax: +49-(0)221-347 1291 sales.vacuum.kn@oerlikon.com

Leybold Vacuum GmbH Service Competence Center

Emil-Hoffmann-Strasse 43 D-50996 Cologne-Suerth Phone: +49-(0)221-347 1439 Fax: +49-(0)221-347 1945 service.vacuum.kn@oerlikon.com

Oerlikon Leybold Vacuum GmbH Mobil Customer Service

Emil-Hoffmann-Strasse 43 D-50996 Cologne-Suerth Phone: +49-(0)221-347 1765 Fax: +49-(0)221-347 1944 service.vacuum.kn@oerlikon.com

Oerlikon Leybold Vacuum GmbH, Dresden

Zur Wetterwarte 50, Haus 304 D-01109 Dresden Service:

Phone: +49-(0)351-88 55 00 +49-(0)351-88 55 041 info.vacuum.dr@oerlikon.com

Europe

Belgium

Oerlikon Leybold Vacuum Nederland B.V. Belgisch bijkantoor

Leuvensesteenweg 542-9A B-1930 Zaventem Sales:

Phone: +32-2-711 00 83 +32-2-720 83 38 sales.vacuum.zv@oerlikon.com

Service: Phone: +32-2-711 00 82 +32-2-720 83 38

service.vacuum.zv@oerlikon.com

France

Oerlikon Leybold Vacuum France S.A.

7, Avenue du Québec Z.A. Courtaboeuf 1 - B.P. 42 F-91942 Courtaboeuf Cedex Sales and Service:

Phone: +33-1-69 82 48 00 Fax: +33-1-69 07 57 38 sales.vacuum.or@oerlikon.com

Levbold Vacuum France S.A. Valence Factory

640, Rue A. Bergès - B.P. 107 F-26501 Bourg-lès-Valence Cedex Phone: +33-4-75 82 33 00 +33-4-75 82 92 69 Fax: info.vacuum.vc@oerlikon.com

Great Britain

Oerlikon Leybold Vacuum UK Ltd.

Silverglade Business Park Leatherhead Road UK-Chessington, Surrey KT9 2QL

Phone: +44-13-7273 7300 +44-13-7273 7301 sales.vacuum.ln@oerlikon.com

Service: Phone: +44-20-8971 7030 +44-20-8971 7003 service.vacuum.ln@oerlikon.com

Oerlikon Leybold Vacuum Italia S.p.A. 8, Via Trasimeno

I-20128 Milano Sales:

Phone: +39-02-27 22 31 Fax: +39-02-27 20 96 41 sales.vacuum.mi@oerlikon.com

Service:

Phone: +39-02-27 22 31 Fax: +39-02-27 22 32 17 service.vacuum.mi@oerlikon.com

Oerlikon Leybold Vacuum Italia S.p.A.

Field Service Base Z.I. Le Capanne I-05021 Acquasparta (TR) Phone: +39-0744-93 03 93 Fax: +39-0744-94 42 87 service.vacuum.mi@oerlikon.com Netherlands

Oerlikon Leybold Vacuum Nederland B.V. Proostwetering 24N

NL-3543 AE Utrecht Sales and Service: Phone: +31-(30) 242 6330 Fax: +31-(30) 242 6331 sales.vacuum.ut@oerlikon.com service.vacuum.ut@oerlikon.com

Spain

Oerlikon Leybold Vacuum Spain, S.A. C/. Huelva. 7

E-08940 Cornellà de Llobregat (Barcelona)

Sales:

Phone: +34-93-666 46 16 +34-93-666 43 70 Fax. sales.vacuum.ba@oerlikon.com Service:

Phone: +34-93-666 49 51 Fax: +34-93-685 40 10 service.vacuum.ba@oerlikon.com

Oerlikon Leybold Vacuum Scandinavia AB

Box 9084 SE-40092 Göteborg Sales and Service:
Phone: +46-31-68 84 70
Fax: +46-31-68 39 39 info.vacuum.gt@oerlikon.com Visiting/delivery address: Datavägen 57B SE-43632 Askim

Switzerland

Oerlikon Leybold Vacuum Schweiz AG Leutschenbachstrasse 55 CH-8050 Zürich

Sales:

Phone: +41-044-308 40 50 +41-044-302 43 73 sales.vacuum.zh@oerlikon.com

Service:

Phone: +41-044-308 40 62 +41-044-308 40 60 service.vacuum.zh@oerlikon.com

America

Oerlikon

Leybold Vacuum USA Inc. 5700 Mellon Road USA-Export, PA 15632 Phone: +1-724-327-5700

+1-724-325-3577 info.vacuum.ex@oerlikon.com

Sales:

Eastern & Central time zones Phone: +1-724-327-5700 Fax: +1-724-333-1217 Pacific, Mountain, Alaskan & Hawaiian time zones Phone: +1-480-752-9191 Fax: +1-480-752-9494

Service:

Phone: +1-724-327-5700 +1-724-325-3577

Leybold Vacuum GmbH

Phone: +49-(0)221-347 0

info.vacuum@oerlikon.com

+49-(0)221-347 1250

Bonner Strasse 498

D-50968 Cologne

Asia

PR. China

Oerlikon Leybold Vacuum (Tianjin) International Trade Co. Ltd.

Beichen Economic Development Area (BEDA), Shanghai Road Tianjin 300400 China

Sales and Service: Phone: +86-22-2697 0808 +86-22-2697 4061 +86-22-2697 2017 Fax: sales.vacuum.tj@oerlikon.com service.vacuum.tj@oerlikon.com

Oerlikon Leybold Vacuum (Tianjin) Co. Ltd.

Beichen Economic Development Area (BEDA), Shanghai Road Tianjin 300400 China

Sales and Service: Phone: +86-22-2697 0808 Fax: +86-22-2697 4061 +86-22-2697 2017 info.vacuum.tj@oerlikon.com service.vacuum.ti@oerlikon.com

Oerlikon Leybold Vacuum (Tianjin) International Trade Co. Ltd. Shanghai Branch:

Add: No.33 76 Futedong San Rd. Waigaoqiao FTZ Shanghai 200131 China

Sales and Service: Phone: +86-21-5064-4666 Fax: +86-21-5064-4668 info.vacuum.sh@oerlikon.com service.vacuum.tj@oerlikon.com

Oerlikon Leybold Vacuum (Tianjin) International Trade Co. Ltd.

Guangzhou Office and Service Center 1st F, Main Building Science City Plaza, No.111 Science Revenue, Guangzhou Science City (GZSC) 510663, Guangzhou, China

Sales:

Phone: +86-20-8723-7873 Phone: +86-20-8723-7597 +86-20-8723-7875 info.vacuum.gz@oerlikon.com service.vacuum.tj@oerlikon.com

Oerlikon Leybold Vacuum (Tianjin) International Trade Co. Ltd.

Beijing Branch: 1-908, Beijing Landmark Towers 8 North Dongsanhuan Road Chaoyang District Beijing 100004 China

Sales: Phone: +86-10-6590-7622 +86-10-6590-7607 sales.vacuum.bj@oerlikon.com

India

Oerlikon Leybold Vacuum India Pvt Ltd. EL-22, J Block

MIDC Bhosari Pune 411026 India

Sales and Service: Phone: +91-20-3061 60000 +91-20-2712 1571 sales.vacuum.pu@oerlikon.com service.vacuum.pu@oerlikon.com Japan

Oerlikon Leybold Vacuum Japan Co., Ltd. Headquarter 23-3, Shin-Yokohama 3-chome

Tobu A.K. Bldg. 4th Floor Kohoku-ku Yokohama-shi 222-0033

Sales:

Phone: +81-45-471-3330 Fax: +81-45-471-3323 info.vacuum.yh@oerlikon.com sales.vacuum.yh@oerlikon.com

Oerlikon Leybold Vacuum Japan Co., Ltd. Osaka Sales Office

5-13, Kawagishi-machi Suita-chi Osaka 564-0037 Phone: +81-6-6393-5211

+81-6-6393-5215 info.vacuum.os@oerlikon.com sales.vacuum.os@oerlikon.com

Oerlikon Leybold Vacuum Japan Co., Ltd.

Tsukuba Technical Service Center Kogyo Danchi 21, Kasuminosato, Ami-machi, Inashiki-gun Ibaraki-ken, 300-0315

Service:

Phone: +81-298 89 2841 +81-298 89 2838 info.vacuum.iik@oerlikon.com sales.vacuum.iik@oerlikon.com

Korea

Oerlikon Leybold Vacuum Korea Ltd.

3F. Jellzone 2 Tower, 159-4 Jeongja-Dong, Bundang-Gu Sungnam-Si, Gyeonggi-Do Korea 463-384

Sales:

Phone: +82-31 785 1367 Fax: +82-31 785 1359

623-7, Upsung-Dong Cheonan-Si Chungcheongnam-Do Korea 330-290 Service:

Phone: +82-41 589 3035 +82-41 588 0166

Singapore

Oerlikon Leybold Vacuum Singapore Pte Ltd.

No.1, International Business Park B1-20B, The Synergy Singapore 609917

Sales and Service: Phone: +65-6303 7000 Fax: +65-67730 039 sales.vacuum.sg@oerlikon.com service.vacuum.sg@oerlikon.com

Taiwan

Oerlikon Leybold Vacuum Taiwan Ltd.

No 416-1, Sec. 3 Chung-Hsin Rd., Chu-Tung Hsin-Chu, Taiwan, R.O.C. Sales and Service: Phone: +886-3-500 1688 Fax: +886-3-583 3999 sales.vacuum.hc@oerlikon.com service.vacuum.hc@oerlikon.com

